Index: webrtc/modules/audio_processing/beamformer/nonlinear_beamformer.cc |
diff --git a/webrtc/modules/audio_processing/beamformer/nonlinear_beamformer.cc b/webrtc/modules/audio_processing/beamformer/nonlinear_beamformer.cc |
index f7e80b5f5143e3cb228623a566bd0a2bc898ac14..3d9a14d04ee0b844ac86111b63da3330593c486a 100644 |
--- a/webrtc/modules/audio_processing/beamformer/nonlinear_beamformer.cc |
+++ b/webrtc/modules/audio_processing/beamformer/nonlinear_beamformer.cc |
@@ -80,7 +80,7 @@ const float kHoldTargetSeconds = 0.25f; |
// The returned norm is clamped to be non-negative. |
float Norm(const ComplexMatrix<float>& mat, |
const ComplexMatrix<float>& norm_mat) { |
- CHECK_EQ(norm_mat.num_rows(), 1); |
+ CHECK_EQ(1u, norm_mat.num_rows()); |
CHECK_EQ(norm_mat.num_columns(), mat.num_rows()); |
CHECK_EQ(norm_mat.num_columns(), mat.num_columns()); |
@@ -90,8 +90,8 @@ float Norm(const ComplexMatrix<float>& mat, |
const complex<float>* const* mat_els = mat.elements(); |
const complex<float>* const* norm_mat_els = norm_mat.elements(); |
- for (int i = 0; i < norm_mat.num_columns(); ++i) { |
- for (int j = 0; j < norm_mat.num_columns(); ++j) { |
+ for (size_t i = 0; i < norm_mat.num_columns(); ++i) { |
+ for (size_t j = 0; j < norm_mat.num_columns(); ++j) { |
first_product += conj(norm_mat_els[0][j]) * mat_els[j][i]; |
} |
second_product += first_product * norm_mat_els[0][i]; |
@@ -103,15 +103,15 @@ float Norm(const ComplexMatrix<float>& mat, |
// Does conjugate(|lhs|) * |rhs| for row vectors |lhs| and |rhs|. |
complex<float> ConjugateDotProduct(const ComplexMatrix<float>& lhs, |
const ComplexMatrix<float>& rhs) { |
- CHECK_EQ(lhs.num_rows(), 1); |
- CHECK_EQ(rhs.num_rows(), 1); |
+ CHECK_EQ(1u, lhs.num_rows()); |
+ CHECK_EQ(1u, rhs.num_rows()); |
CHECK_EQ(lhs.num_columns(), rhs.num_columns()); |
const complex<float>* const* lhs_elements = lhs.elements(); |
const complex<float>* const* rhs_elements = rhs.elements(); |
complex<float> result = complex<float>(0.f, 0.f); |
- for (int i = 0; i < lhs.num_columns(); ++i) { |
+ for (size_t i = 0; i < lhs.num_columns(); ++i) { |
result += conj(lhs_elements[0][i]) * rhs_elements[0][i]; |
} |
@@ -127,8 +127,8 @@ size_t Round(float x) { |
float SumAbs(const ComplexMatrix<float>& mat) { |
float sum_abs = 0.f; |
const complex<float>* const* mat_els = mat.elements(); |
- for (int i = 0; i < mat.num_rows(); ++i) { |
- for (int j = 0; j < mat.num_columns(); ++j) { |
+ for (size_t i = 0; i < mat.num_rows(); ++i) { |
+ for (size_t j = 0; j < mat.num_columns(); ++j) { |
sum_abs += std::abs(mat_els[i][j]); |
} |
} |
@@ -139,8 +139,8 @@ float SumAbs(const ComplexMatrix<float>& mat) { |
float SumSquares(const ComplexMatrix<float>& mat) { |
float sum_squares = 0.f; |
const complex<float>* const* mat_els = mat.elements(); |
- for (int i = 0; i < mat.num_rows(); ++i) { |
- for (int j = 0; j < mat.num_columns(); ++j) { |
+ for (size_t i = 0; i < mat.num_rows(); ++i) { |
+ for (size_t j = 0; j < mat.num_columns(); ++j) { |
float abs_value = std::abs(mat_els[i][j]); |
sum_squares += abs_value * abs_value; |
} |
@@ -151,20 +151,20 @@ float SumSquares(const ComplexMatrix<float>& mat) { |
// Does |out| = |in|.' * conj(|in|) for row vector |in|. |
void TransposedConjugatedProduct(const ComplexMatrix<float>& in, |
ComplexMatrix<float>* out) { |
- CHECK_EQ(in.num_rows(), 1); |
+ CHECK_EQ(1u, in.num_rows()); |
CHECK_EQ(out->num_rows(), in.num_columns()); |
CHECK_EQ(out->num_columns(), in.num_columns()); |
const complex<float>* in_elements = in.elements()[0]; |
complex<float>* const* out_elements = out->elements(); |
- for (int i = 0; i < out->num_rows(); ++i) { |
- for (int j = 0; j < out->num_columns(); ++j) { |
+ for (size_t i = 0; i < out->num_rows(); ++i) { |
+ for (size_t j = 0; j < out->num_columns(); ++j) { |
out_elements[i][j] = in_elements[i] * conj(in_elements[j]); |
} |
} |
} |
std::vector<Point> GetCenteredArray(std::vector<Point> array_geometry) { |
- for (int dim = 0; dim < 3; ++dim) { |
+ for (size_t dim = 0; dim < 3; ++dim) { |
float center = 0.f; |
for (size_t i = 0; i < array_geometry.size(); ++i) { |
center += array_geometry[i].c[dim]; |
@@ -332,7 +332,7 @@ void NonlinearBeamformer::ProcessChunk(const ChannelBuffer<float>& input, |
// Applying the delay and sum (at zero degrees, this is equivalent to |
// averaging). |
float sum = 0.f; |
- for (int k = 0; k < input.num_channels(); ++k) { |
+ for (size_t k = 0; k < input.num_channels(); ++k) { |
sum += input.channels(i)[k][j]; |
} |
output->channels(i)[0][j] = sum / input.num_channels() * smoothed_mask; |
@@ -348,13 +348,13 @@ bool NonlinearBeamformer::IsInBeam(const SphericalPointf& spherical_point) { |
} |
void NonlinearBeamformer::ProcessAudioBlock(const complex_f* const* input, |
- int num_input_channels, |
+ size_t num_input_channels, |
size_t num_freq_bins, |
- int num_output_channels, |
+ size_t num_output_channels, |
complex_f* const* output) { |
- CHECK_EQ(num_freq_bins, kNumFreqBins); |
- CHECK_EQ(num_input_channels, num_input_channels_); |
- CHECK_EQ(num_output_channels, 1); |
+ CHECK_EQ(kNumFreqBins, num_freq_bins); |
+ CHECK_EQ(num_input_channels_, num_input_channels); |
+ CHECK_EQ(1u, num_output_channels); |
// Calculating the post-filter masks. Note that we need two for each |
// frequency bin to account for the positive and negative interferer |
@@ -429,7 +429,7 @@ void NonlinearBeamformer::ApplyMasks(const complex_f* const* input, |
const complex_f* delay_sum_mask_els = |
normalized_delay_sum_masks_[f_ix].elements()[0]; |
- for (int c_ix = 0; c_ix < num_input_channels_; ++c_ix) { |
+ for (size_t c_ix = 0; c_ix < num_input_channels_; ++c_ix) { |
output_channel[f_ix] += input[c_ix][f_ix] * delay_sum_mask_els[c_ix]; |
} |