Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(326)

Side by Side Diff: webrtc/modules/audio_processing/beamformer/nonlinear_beamformer.cc

Issue 1238083005: [NOT FOR REVIEW] Convert channel counts to size_t. (Closed) Base URL: https://chromium.googlesource.com/external/webrtc@size_t
Patch Set: Checkpoint Created 5 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* 1 /*
2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
3 * 3 *
4 * Use of this source code is governed by a BSD-style license 4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source 5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found 6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may 7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree. 8 * be found in the AUTHORS file in the root of the source tree.
9 */ 9 */
10 10
(...skipping 62 matching lines...) Expand 10 before | Expand all | Expand 10 after
73 const float kMaskTargetThreshold = 0.3f; 73 const float kMaskTargetThreshold = 0.3f;
74 // Time in seconds after which the data is considered interference if the mask 74 // Time in seconds after which the data is considered interference if the mask
75 // does not pass |kMaskTargetThreshold|. 75 // does not pass |kMaskTargetThreshold|.
76 const float kHoldTargetSeconds = 0.25f; 76 const float kHoldTargetSeconds = 0.25f;
77 77
78 // Does conjugate(|norm_mat|) * |mat| * transpose(|norm_mat|). No extra space is 78 // Does conjugate(|norm_mat|) * |mat| * transpose(|norm_mat|). No extra space is
79 // used; to accomplish this, we compute both multiplications in the same loop. 79 // used; to accomplish this, we compute both multiplications in the same loop.
80 // The returned norm is clamped to be non-negative. 80 // The returned norm is clamped to be non-negative.
81 float Norm(const ComplexMatrix<float>& mat, 81 float Norm(const ComplexMatrix<float>& mat,
82 const ComplexMatrix<float>& norm_mat) { 82 const ComplexMatrix<float>& norm_mat) {
83 CHECK_EQ(norm_mat.num_rows(), 1); 83 CHECK_EQ(1u, norm_mat.num_rows());
84 CHECK_EQ(norm_mat.num_columns(), mat.num_rows()); 84 CHECK_EQ(norm_mat.num_columns(), mat.num_rows());
85 CHECK_EQ(norm_mat.num_columns(), mat.num_columns()); 85 CHECK_EQ(norm_mat.num_columns(), mat.num_columns());
86 86
87 complex<float> first_product = complex<float>(0.f, 0.f); 87 complex<float> first_product = complex<float>(0.f, 0.f);
88 complex<float> second_product = complex<float>(0.f, 0.f); 88 complex<float> second_product = complex<float>(0.f, 0.f);
89 89
90 const complex<float>* const* mat_els = mat.elements(); 90 const complex<float>* const* mat_els = mat.elements();
91 const complex<float>* const* norm_mat_els = norm_mat.elements(); 91 const complex<float>* const* norm_mat_els = norm_mat.elements();
92 92
93 for (int i = 0; i < norm_mat.num_columns(); ++i) { 93 for (size_t i = 0; i < norm_mat.num_columns(); ++i) {
94 for (int j = 0; j < norm_mat.num_columns(); ++j) { 94 for (size_t j = 0; j < norm_mat.num_columns(); ++j) {
95 first_product += conj(norm_mat_els[0][j]) * mat_els[j][i]; 95 first_product += conj(norm_mat_els[0][j]) * mat_els[j][i];
96 } 96 }
97 second_product += first_product * norm_mat_els[0][i]; 97 second_product += first_product * norm_mat_els[0][i];
98 first_product = 0.f; 98 first_product = 0.f;
99 } 99 }
100 return std::max(second_product.real(), 0.f); 100 return std::max(second_product.real(), 0.f);
101 } 101 }
102 102
103 // Does conjugate(|lhs|) * |rhs| for row vectors |lhs| and |rhs|. 103 // Does conjugate(|lhs|) * |rhs| for row vectors |lhs| and |rhs|.
104 complex<float> ConjugateDotProduct(const ComplexMatrix<float>& lhs, 104 complex<float> ConjugateDotProduct(const ComplexMatrix<float>& lhs,
105 const ComplexMatrix<float>& rhs) { 105 const ComplexMatrix<float>& rhs) {
106 CHECK_EQ(lhs.num_rows(), 1); 106 CHECK_EQ(1u, lhs.num_rows());
107 CHECK_EQ(rhs.num_rows(), 1); 107 CHECK_EQ(1u, rhs.num_rows());
108 CHECK_EQ(lhs.num_columns(), rhs.num_columns()); 108 CHECK_EQ(lhs.num_columns(), rhs.num_columns());
109 109
110 const complex<float>* const* lhs_elements = lhs.elements(); 110 const complex<float>* const* lhs_elements = lhs.elements();
111 const complex<float>* const* rhs_elements = rhs.elements(); 111 const complex<float>* const* rhs_elements = rhs.elements();
112 112
113 complex<float> result = complex<float>(0.f, 0.f); 113 complex<float> result = complex<float>(0.f, 0.f);
114 for (int i = 0; i < lhs.num_columns(); ++i) { 114 for (size_t i = 0; i < lhs.num_columns(); ++i) {
115 result += conj(lhs_elements[0][i]) * rhs_elements[0][i]; 115 result += conj(lhs_elements[0][i]) * rhs_elements[0][i];
116 } 116 }
117 117
118 return result; 118 return result;
119 } 119 }
120 120
121 // Works for positive numbers only. 121 // Works for positive numbers only.
122 size_t Round(float x) { 122 size_t Round(float x) {
123 return static_cast<size_t>(std::floor(x + 0.5f)); 123 return static_cast<size_t>(std::floor(x + 0.5f));
124 } 124 }
125 125
126 // Calculates the sum of absolute values of a complex matrix. 126 // Calculates the sum of absolute values of a complex matrix.
127 float SumAbs(const ComplexMatrix<float>& mat) { 127 float SumAbs(const ComplexMatrix<float>& mat) {
128 float sum_abs = 0.f; 128 float sum_abs = 0.f;
129 const complex<float>* const* mat_els = mat.elements(); 129 const complex<float>* const* mat_els = mat.elements();
130 for (int i = 0; i < mat.num_rows(); ++i) { 130 for (size_t i = 0; i < mat.num_rows(); ++i) {
131 for (int j = 0; j < mat.num_columns(); ++j) { 131 for (size_t j = 0; j < mat.num_columns(); ++j) {
132 sum_abs += std::abs(mat_els[i][j]); 132 sum_abs += std::abs(mat_els[i][j]);
133 } 133 }
134 } 134 }
135 return sum_abs; 135 return sum_abs;
136 } 136 }
137 137
138 // Calculates the sum of squares of a complex matrix. 138 // Calculates the sum of squares of a complex matrix.
139 float SumSquares(const ComplexMatrix<float>& mat) { 139 float SumSquares(const ComplexMatrix<float>& mat) {
140 float sum_squares = 0.f; 140 float sum_squares = 0.f;
141 const complex<float>* const* mat_els = mat.elements(); 141 const complex<float>* const* mat_els = mat.elements();
142 for (int i = 0; i < mat.num_rows(); ++i) { 142 for (size_t i = 0; i < mat.num_rows(); ++i) {
143 for (int j = 0; j < mat.num_columns(); ++j) { 143 for (size_t j = 0; j < mat.num_columns(); ++j) {
144 float abs_value = std::abs(mat_els[i][j]); 144 float abs_value = std::abs(mat_els[i][j]);
145 sum_squares += abs_value * abs_value; 145 sum_squares += abs_value * abs_value;
146 } 146 }
147 } 147 }
148 return sum_squares; 148 return sum_squares;
149 } 149 }
150 150
151 // Does |out| = |in|.' * conj(|in|) for row vector |in|. 151 // Does |out| = |in|.' * conj(|in|) for row vector |in|.
152 void TransposedConjugatedProduct(const ComplexMatrix<float>& in, 152 void TransposedConjugatedProduct(const ComplexMatrix<float>& in,
153 ComplexMatrix<float>* out) { 153 ComplexMatrix<float>* out) {
154 CHECK_EQ(in.num_rows(), 1); 154 CHECK_EQ(1u, in.num_rows());
155 CHECK_EQ(out->num_rows(), in.num_columns()); 155 CHECK_EQ(out->num_rows(), in.num_columns());
156 CHECK_EQ(out->num_columns(), in.num_columns()); 156 CHECK_EQ(out->num_columns(), in.num_columns());
157 const complex<float>* in_elements = in.elements()[0]; 157 const complex<float>* in_elements = in.elements()[0];
158 complex<float>* const* out_elements = out->elements(); 158 complex<float>* const* out_elements = out->elements();
159 for (int i = 0; i < out->num_rows(); ++i) { 159 for (size_t i = 0; i < out->num_rows(); ++i) {
160 for (int j = 0; j < out->num_columns(); ++j) { 160 for (size_t j = 0; j < out->num_columns(); ++j) {
161 out_elements[i][j] = in_elements[i] * conj(in_elements[j]); 161 out_elements[i][j] = in_elements[i] * conj(in_elements[j]);
162 } 162 }
163 } 163 }
164 } 164 }
165 165
166 std::vector<Point> GetCenteredArray(std::vector<Point> array_geometry) { 166 std::vector<Point> GetCenteredArray(std::vector<Point> array_geometry) {
167 for (int dim = 0; dim < 3; ++dim) { 167 for (size_t dim = 0; dim < 3; ++dim) {
168 float center = 0.f; 168 float center = 0.f;
169 for (size_t i = 0; i < array_geometry.size(); ++i) { 169 for (size_t i = 0; i < array_geometry.size(); ++i) {
170 center += array_geometry[i].c[dim]; 170 center += array_geometry[i].c[dim];
171 } 171 }
172 center /= array_geometry.size(); 172 center /= array_geometry.size();
173 for (size_t i = 0; i < array_geometry.size(); ++i) { 173 for (size_t i = 0; i < array_geometry.size(); ++i) {
174 array_geometry[i].c[dim] -= center; 174 array_geometry[i].c[dim] -= center;
175 } 175 }
176 } 176 }
177 return array_geometry; 177 return array_geometry;
(...skipping 147 matching lines...) Expand 10 before | Expand all | Expand 10 after
325 // Apply delay and sum and post-filter in the time domain. WARNING: only works 325 // Apply delay and sum and post-filter in the time domain. WARNING: only works
326 // because delay-and-sum is not frequency dependent. 326 // because delay-and-sum is not frequency dependent.
327 for (size_t i = 1; i < input.num_bands(); ++i) { 327 for (size_t i = 1; i < input.num_bands(); ++i) {
328 float smoothed_mask = old_high_pass_mask; 328 float smoothed_mask = old_high_pass_mask;
329 for (size_t j = 0; j < input.num_frames_per_band(); ++j) { 329 for (size_t j = 0; j < input.num_frames_per_band(); ++j) {
330 smoothed_mask += ramp_increment; 330 smoothed_mask += ramp_increment;
331 331
332 // Applying the delay and sum (at zero degrees, this is equivalent to 332 // Applying the delay and sum (at zero degrees, this is equivalent to
333 // averaging). 333 // averaging).
334 float sum = 0.f; 334 float sum = 0.f;
335 for (int k = 0; k < input.num_channels(); ++k) { 335 for (size_t k = 0; k < input.num_channels(); ++k) {
336 sum += input.channels(i)[k][j]; 336 sum += input.channels(i)[k][j];
337 } 337 }
338 output->channels(i)[0][j] = sum / input.num_channels() * smoothed_mask; 338 output->channels(i)[0][j] = sum / input.num_channels() * smoothed_mask;
339 } 339 }
340 } 340 }
341 } 341 }
342 342
343 bool NonlinearBeamformer::IsInBeam(const SphericalPointf& spherical_point) { 343 bool NonlinearBeamformer::IsInBeam(const SphericalPointf& spherical_point) {
344 // If more than half-beamwidth degrees away from the beam's center, 344 // If more than half-beamwidth degrees away from the beam's center,
345 // you are out of the beam. 345 // you are out of the beam.
346 return fabs(spherical_point.azimuth() - kTargetAngleRadians) < 346 return fabs(spherical_point.azimuth() - kTargetAngleRadians) <
347 kHalfBeamWidthRadians; 347 kHalfBeamWidthRadians;
348 } 348 }
349 349
350 void NonlinearBeamformer::ProcessAudioBlock(const complex_f* const* input, 350 void NonlinearBeamformer::ProcessAudioBlock(const complex_f* const* input,
351 int num_input_channels, 351 size_t num_input_channels,
352 size_t num_freq_bins, 352 size_t num_freq_bins,
353 int num_output_channels, 353 size_t num_output_channels,
354 complex_f* const* output) { 354 complex_f* const* output) {
355 CHECK_EQ(num_freq_bins, kNumFreqBins); 355 CHECK_EQ(kNumFreqBins, num_freq_bins);
356 CHECK_EQ(num_input_channels, num_input_channels_); 356 CHECK_EQ(num_input_channels_, num_input_channels);
357 CHECK_EQ(num_output_channels, 1); 357 CHECK_EQ(1u, num_output_channels);
358 358
359 // Calculating the post-filter masks. Note that we need two for each 359 // Calculating the post-filter masks. Note that we need two for each
360 // frequency bin to account for the positive and negative interferer 360 // frequency bin to account for the positive and negative interferer
361 // angle. 361 // angle.
362 for (size_t i = low_mean_start_bin_; i <= high_mean_end_bin_; ++i) { 362 for (size_t i = low_mean_start_bin_; i <= high_mean_end_bin_; ++i) {
363 eig_m_.CopyFromColumn(input, i, num_input_channels_); 363 eig_m_.CopyFromColumn(input, i, num_input_channels_);
364 float eig_m_norm_factor = std::sqrt(SumSquares(eig_m_)); 364 float eig_m_norm_factor = std::sqrt(SumSquares(eig_m_));
365 if (eig_m_norm_factor != 0.f) { 365 if (eig_m_norm_factor != 0.f) {
366 eig_m_.Scale(1.f / eig_m_norm_factor); 366 eig_m_.Scale(1.f / eig_m_norm_factor);
367 } 367 }
(...skipping 54 matching lines...) Expand 10 before | Expand all | Expand 10 after
422 } 422 }
423 423
424 void NonlinearBeamformer::ApplyMasks(const complex_f* const* input, 424 void NonlinearBeamformer::ApplyMasks(const complex_f* const* input,
425 complex_f* const* output) { 425 complex_f* const* output) {
426 complex_f* output_channel = output[0]; 426 complex_f* output_channel = output[0];
427 for (size_t f_ix = 0; f_ix < kNumFreqBins; ++f_ix) { 427 for (size_t f_ix = 0; f_ix < kNumFreqBins; ++f_ix) {
428 output_channel[f_ix] = complex_f(0.f, 0.f); 428 output_channel[f_ix] = complex_f(0.f, 0.f);
429 429
430 const complex_f* delay_sum_mask_els = 430 const complex_f* delay_sum_mask_els =
431 normalized_delay_sum_masks_[f_ix].elements()[0]; 431 normalized_delay_sum_masks_[f_ix].elements()[0];
432 for (int c_ix = 0; c_ix < num_input_channels_; ++c_ix) { 432 for (size_t c_ix = 0; c_ix < num_input_channels_; ++c_ix) {
433 output_channel[f_ix] += input[c_ix][f_ix] * delay_sum_mask_els[c_ix]; 433 output_channel[f_ix] += input[c_ix][f_ix] * delay_sum_mask_els[c_ix];
434 } 434 }
435 435
436 output_channel[f_ix] *= final_mask_[f_ix]; 436 output_channel[f_ix] *= final_mask_[f_ix];
437 } 437 }
438 } 438 }
439 439
440 // Smooth new_mask_ into time_smooth_mask_. 440 // Smooth new_mask_ into time_smooth_mask_.
441 void NonlinearBeamformer::ApplyMaskTimeSmoothing() { 441 void NonlinearBeamformer::ApplyMaskTimeSmoothing() {
442 for (size_t i = low_mean_start_bin_; i <= high_mean_end_bin_; ++i) { 442 for (size_t i = low_mean_start_bin_; i <= high_mean_end_bin_; ++i) {
(...skipping 64 matching lines...) Expand 10 before | Expand all | Expand 10 after
507 new_mask_ + high_mean_end_bin_ + 1); 507 new_mask_ + high_mean_end_bin_ + 1);
508 if (new_mask_[quantile] > kMaskTargetThreshold) { 508 if (new_mask_[quantile] > kMaskTargetThreshold) {
509 is_target_present_ = true; 509 is_target_present_ = true;
510 interference_blocks_count_ = 0; 510 interference_blocks_count_ = 0;
511 } else { 511 } else {
512 is_target_present_ = interference_blocks_count_++ < hold_target_blocks_; 512 is_target_present_ = interference_blocks_count_++ < hold_target_blocks_;
513 } 513 }
514 } 514 }
515 515
516 } // namespace webrtc 516 } // namespace webrtc
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698