OLD | NEW |
1 /* | 1 /* |
2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. | 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
9 */ | 9 */ |
10 | 10 |
(...skipping 62 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
73 const float kMaskTargetThreshold = 0.3f; | 73 const float kMaskTargetThreshold = 0.3f; |
74 // Time in seconds after which the data is considered interference if the mask | 74 // Time in seconds after which the data is considered interference if the mask |
75 // does not pass |kMaskTargetThreshold|. | 75 // does not pass |kMaskTargetThreshold|. |
76 const float kHoldTargetSeconds = 0.25f; | 76 const float kHoldTargetSeconds = 0.25f; |
77 | 77 |
78 // Does conjugate(|norm_mat|) * |mat| * transpose(|norm_mat|). No extra space is | 78 // Does conjugate(|norm_mat|) * |mat| * transpose(|norm_mat|). No extra space is |
79 // used; to accomplish this, we compute both multiplications in the same loop. | 79 // used; to accomplish this, we compute both multiplications in the same loop. |
80 // The returned norm is clamped to be non-negative. | 80 // The returned norm is clamped to be non-negative. |
81 float Norm(const ComplexMatrix<float>& mat, | 81 float Norm(const ComplexMatrix<float>& mat, |
82 const ComplexMatrix<float>& norm_mat) { | 82 const ComplexMatrix<float>& norm_mat) { |
83 CHECK_EQ(norm_mat.num_rows(), 1); | 83 CHECK_EQ(1u, norm_mat.num_rows()); |
84 CHECK_EQ(norm_mat.num_columns(), mat.num_rows()); | 84 CHECK_EQ(norm_mat.num_columns(), mat.num_rows()); |
85 CHECK_EQ(norm_mat.num_columns(), mat.num_columns()); | 85 CHECK_EQ(norm_mat.num_columns(), mat.num_columns()); |
86 | 86 |
87 complex<float> first_product = complex<float>(0.f, 0.f); | 87 complex<float> first_product = complex<float>(0.f, 0.f); |
88 complex<float> second_product = complex<float>(0.f, 0.f); | 88 complex<float> second_product = complex<float>(0.f, 0.f); |
89 | 89 |
90 const complex<float>* const* mat_els = mat.elements(); | 90 const complex<float>* const* mat_els = mat.elements(); |
91 const complex<float>* const* norm_mat_els = norm_mat.elements(); | 91 const complex<float>* const* norm_mat_els = norm_mat.elements(); |
92 | 92 |
93 for (int i = 0; i < norm_mat.num_columns(); ++i) { | 93 for (size_t i = 0; i < norm_mat.num_columns(); ++i) { |
94 for (int j = 0; j < norm_mat.num_columns(); ++j) { | 94 for (size_t j = 0; j < norm_mat.num_columns(); ++j) { |
95 first_product += conj(norm_mat_els[0][j]) * mat_els[j][i]; | 95 first_product += conj(norm_mat_els[0][j]) * mat_els[j][i]; |
96 } | 96 } |
97 second_product += first_product * norm_mat_els[0][i]; | 97 second_product += first_product * norm_mat_els[0][i]; |
98 first_product = 0.f; | 98 first_product = 0.f; |
99 } | 99 } |
100 return std::max(second_product.real(), 0.f); | 100 return std::max(second_product.real(), 0.f); |
101 } | 101 } |
102 | 102 |
103 // Does conjugate(|lhs|) * |rhs| for row vectors |lhs| and |rhs|. | 103 // Does conjugate(|lhs|) * |rhs| for row vectors |lhs| and |rhs|. |
104 complex<float> ConjugateDotProduct(const ComplexMatrix<float>& lhs, | 104 complex<float> ConjugateDotProduct(const ComplexMatrix<float>& lhs, |
105 const ComplexMatrix<float>& rhs) { | 105 const ComplexMatrix<float>& rhs) { |
106 CHECK_EQ(lhs.num_rows(), 1); | 106 CHECK_EQ(1u, lhs.num_rows()); |
107 CHECK_EQ(rhs.num_rows(), 1); | 107 CHECK_EQ(1u, rhs.num_rows()); |
108 CHECK_EQ(lhs.num_columns(), rhs.num_columns()); | 108 CHECK_EQ(lhs.num_columns(), rhs.num_columns()); |
109 | 109 |
110 const complex<float>* const* lhs_elements = lhs.elements(); | 110 const complex<float>* const* lhs_elements = lhs.elements(); |
111 const complex<float>* const* rhs_elements = rhs.elements(); | 111 const complex<float>* const* rhs_elements = rhs.elements(); |
112 | 112 |
113 complex<float> result = complex<float>(0.f, 0.f); | 113 complex<float> result = complex<float>(0.f, 0.f); |
114 for (int i = 0; i < lhs.num_columns(); ++i) { | 114 for (size_t i = 0; i < lhs.num_columns(); ++i) { |
115 result += conj(lhs_elements[0][i]) * rhs_elements[0][i]; | 115 result += conj(lhs_elements[0][i]) * rhs_elements[0][i]; |
116 } | 116 } |
117 | 117 |
118 return result; | 118 return result; |
119 } | 119 } |
120 | 120 |
121 // Works for positive numbers only. | 121 // Works for positive numbers only. |
122 size_t Round(float x) { | 122 size_t Round(float x) { |
123 return static_cast<size_t>(std::floor(x + 0.5f)); | 123 return static_cast<size_t>(std::floor(x + 0.5f)); |
124 } | 124 } |
125 | 125 |
126 // Calculates the sum of absolute values of a complex matrix. | 126 // Calculates the sum of absolute values of a complex matrix. |
127 float SumAbs(const ComplexMatrix<float>& mat) { | 127 float SumAbs(const ComplexMatrix<float>& mat) { |
128 float sum_abs = 0.f; | 128 float sum_abs = 0.f; |
129 const complex<float>* const* mat_els = mat.elements(); | 129 const complex<float>* const* mat_els = mat.elements(); |
130 for (int i = 0; i < mat.num_rows(); ++i) { | 130 for (size_t i = 0; i < mat.num_rows(); ++i) { |
131 for (int j = 0; j < mat.num_columns(); ++j) { | 131 for (size_t j = 0; j < mat.num_columns(); ++j) { |
132 sum_abs += std::abs(mat_els[i][j]); | 132 sum_abs += std::abs(mat_els[i][j]); |
133 } | 133 } |
134 } | 134 } |
135 return sum_abs; | 135 return sum_abs; |
136 } | 136 } |
137 | 137 |
138 // Calculates the sum of squares of a complex matrix. | 138 // Calculates the sum of squares of a complex matrix. |
139 float SumSquares(const ComplexMatrix<float>& mat) { | 139 float SumSquares(const ComplexMatrix<float>& mat) { |
140 float sum_squares = 0.f; | 140 float sum_squares = 0.f; |
141 const complex<float>* const* mat_els = mat.elements(); | 141 const complex<float>* const* mat_els = mat.elements(); |
142 for (int i = 0; i < mat.num_rows(); ++i) { | 142 for (size_t i = 0; i < mat.num_rows(); ++i) { |
143 for (int j = 0; j < mat.num_columns(); ++j) { | 143 for (size_t j = 0; j < mat.num_columns(); ++j) { |
144 float abs_value = std::abs(mat_els[i][j]); | 144 float abs_value = std::abs(mat_els[i][j]); |
145 sum_squares += abs_value * abs_value; | 145 sum_squares += abs_value * abs_value; |
146 } | 146 } |
147 } | 147 } |
148 return sum_squares; | 148 return sum_squares; |
149 } | 149 } |
150 | 150 |
151 // Does |out| = |in|.' * conj(|in|) for row vector |in|. | 151 // Does |out| = |in|.' * conj(|in|) for row vector |in|. |
152 void TransposedConjugatedProduct(const ComplexMatrix<float>& in, | 152 void TransposedConjugatedProduct(const ComplexMatrix<float>& in, |
153 ComplexMatrix<float>* out) { | 153 ComplexMatrix<float>* out) { |
154 CHECK_EQ(in.num_rows(), 1); | 154 CHECK_EQ(1u, in.num_rows()); |
155 CHECK_EQ(out->num_rows(), in.num_columns()); | 155 CHECK_EQ(out->num_rows(), in.num_columns()); |
156 CHECK_EQ(out->num_columns(), in.num_columns()); | 156 CHECK_EQ(out->num_columns(), in.num_columns()); |
157 const complex<float>* in_elements = in.elements()[0]; | 157 const complex<float>* in_elements = in.elements()[0]; |
158 complex<float>* const* out_elements = out->elements(); | 158 complex<float>* const* out_elements = out->elements(); |
159 for (int i = 0; i < out->num_rows(); ++i) { | 159 for (size_t i = 0; i < out->num_rows(); ++i) { |
160 for (int j = 0; j < out->num_columns(); ++j) { | 160 for (size_t j = 0; j < out->num_columns(); ++j) { |
161 out_elements[i][j] = in_elements[i] * conj(in_elements[j]); | 161 out_elements[i][j] = in_elements[i] * conj(in_elements[j]); |
162 } | 162 } |
163 } | 163 } |
164 } | 164 } |
165 | 165 |
166 std::vector<Point> GetCenteredArray(std::vector<Point> array_geometry) { | 166 std::vector<Point> GetCenteredArray(std::vector<Point> array_geometry) { |
167 for (int dim = 0; dim < 3; ++dim) { | 167 for (size_t dim = 0; dim < 3; ++dim) { |
168 float center = 0.f; | 168 float center = 0.f; |
169 for (size_t i = 0; i < array_geometry.size(); ++i) { | 169 for (size_t i = 0; i < array_geometry.size(); ++i) { |
170 center += array_geometry[i].c[dim]; | 170 center += array_geometry[i].c[dim]; |
171 } | 171 } |
172 center /= array_geometry.size(); | 172 center /= array_geometry.size(); |
173 for (size_t i = 0; i < array_geometry.size(); ++i) { | 173 for (size_t i = 0; i < array_geometry.size(); ++i) { |
174 array_geometry[i].c[dim] -= center; | 174 array_geometry[i].c[dim] -= center; |
175 } | 175 } |
176 } | 176 } |
177 return array_geometry; | 177 return array_geometry; |
(...skipping 147 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
325 // Apply delay and sum and post-filter in the time domain. WARNING: only works | 325 // Apply delay and sum and post-filter in the time domain. WARNING: only works |
326 // because delay-and-sum is not frequency dependent. | 326 // because delay-and-sum is not frequency dependent. |
327 for (size_t i = 1; i < input.num_bands(); ++i) { | 327 for (size_t i = 1; i < input.num_bands(); ++i) { |
328 float smoothed_mask = old_high_pass_mask; | 328 float smoothed_mask = old_high_pass_mask; |
329 for (size_t j = 0; j < input.num_frames_per_band(); ++j) { | 329 for (size_t j = 0; j < input.num_frames_per_band(); ++j) { |
330 smoothed_mask += ramp_increment; | 330 smoothed_mask += ramp_increment; |
331 | 331 |
332 // Applying the delay and sum (at zero degrees, this is equivalent to | 332 // Applying the delay and sum (at zero degrees, this is equivalent to |
333 // averaging). | 333 // averaging). |
334 float sum = 0.f; | 334 float sum = 0.f; |
335 for (int k = 0; k < input.num_channels(); ++k) { | 335 for (size_t k = 0; k < input.num_channels(); ++k) { |
336 sum += input.channels(i)[k][j]; | 336 sum += input.channels(i)[k][j]; |
337 } | 337 } |
338 output->channels(i)[0][j] = sum / input.num_channels() * smoothed_mask; | 338 output->channels(i)[0][j] = sum / input.num_channels() * smoothed_mask; |
339 } | 339 } |
340 } | 340 } |
341 } | 341 } |
342 | 342 |
343 bool NonlinearBeamformer::IsInBeam(const SphericalPointf& spherical_point) { | 343 bool NonlinearBeamformer::IsInBeam(const SphericalPointf& spherical_point) { |
344 // If more than half-beamwidth degrees away from the beam's center, | 344 // If more than half-beamwidth degrees away from the beam's center, |
345 // you are out of the beam. | 345 // you are out of the beam. |
346 return fabs(spherical_point.azimuth() - kTargetAngleRadians) < | 346 return fabs(spherical_point.azimuth() - kTargetAngleRadians) < |
347 kHalfBeamWidthRadians; | 347 kHalfBeamWidthRadians; |
348 } | 348 } |
349 | 349 |
350 void NonlinearBeamformer::ProcessAudioBlock(const complex_f* const* input, | 350 void NonlinearBeamformer::ProcessAudioBlock(const complex_f* const* input, |
351 int num_input_channels, | 351 size_t num_input_channels, |
352 size_t num_freq_bins, | 352 size_t num_freq_bins, |
353 int num_output_channels, | 353 size_t num_output_channels, |
354 complex_f* const* output) { | 354 complex_f* const* output) { |
355 CHECK_EQ(num_freq_bins, kNumFreqBins); | 355 CHECK_EQ(kNumFreqBins, num_freq_bins); |
356 CHECK_EQ(num_input_channels, num_input_channels_); | 356 CHECK_EQ(num_input_channels_, num_input_channels); |
357 CHECK_EQ(num_output_channels, 1); | 357 CHECK_EQ(1u, num_output_channels); |
358 | 358 |
359 // Calculating the post-filter masks. Note that we need two for each | 359 // Calculating the post-filter masks. Note that we need two for each |
360 // frequency bin to account for the positive and negative interferer | 360 // frequency bin to account for the positive and negative interferer |
361 // angle. | 361 // angle. |
362 for (size_t i = low_mean_start_bin_; i <= high_mean_end_bin_; ++i) { | 362 for (size_t i = low_mean_start_bin_; i <= high_mean_end_bin_; ++i) { |
363 eig_m_.CopyFromColumn(input, i, num_input_channels_); | 363 eig_m_.CopyFromColumn(input, i, num_input_channels_); |
364 float eig_m_norm_factor = std::sqrt(SumSquares(eig_m_)); | 364 float eig_m_norm_factor = std::sqrt(SumSquares(eig_m_)); |
365 if (eig_m_norm_factor != 0.f) { | 365 if (eig_m_norm_factor != 0.f) { |
366 eig_m_.Scale(1.f / eig_m_norm_factor); | 366 eig_m_.Scale(1.f / eig_m_norm_factor); |
367 } | 367 } |
(...skipping 54 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
422 } | 422 } |
423 | 423 |
424 void NonlinearBeamformer::ApplyMasks(const complex_f* const* input, | 424 void NonlinearBeamformer::ApplyMasks(const complex_f* const* input, |
425 complex_f* const* output) { | 425 complex_f* const* output) { |
426 complex_f* output_channel = output[0]; | 426 complex_f* output_channel = output[0]; |
427 for (size_t f_ix = 0; f_ix < kNumFreqBins; ++f_ix) { | 427 for (size_t f_ix = 0; f_ix < kNumFreqBins; ++f_ix) { |
428 output_channel[f_ix] = complex_f(0.f, 0.f); | 428 output_channel[f_ix] = complex_f(0.f, 0.f); |
429 | 429 |
430 const complex_f* delay_sum_mask_els = | 430 const complex_f* delay_sum_mask_els = |
431 normalized_delay_sum_masks_[f_ix].elements()[0]; | 431 normalized_delay_sum_masks_[f_ix].elements()[0]; |
432 for (int c_ix = 0; c_ix < num_input_channels_; ++c_ix) { | 432 for (size_t c_ix = 0; c_ix < num_input_channels_; ++c_ix) { |
433 output_channel[f_ix] += input[c_ix][f_ix] * delay_sum_mask_els[c_ix]; | 433 output_channel[f_ix] += input[c_ix][f_ix] * delay_sum_mask_els[c_ix]; |
434 } | 434 } |
435 | 435 |
436 output_channel[f_ix] *= final_mask_[f_ix]; | 436 output_channel[f_ix] *= final_mask_[f_ix]; |
437 } | 437 } |
438 } | 438 } |
439 | 439 |
440 // Smooth new_mask_ into time_smooth_mask_. | 440 // Smooth new_mask_ into time_smooth_mask_. |
441 void NonlinearBeamformer::ApplyMaskTimeSmoothing() { | 441 void NonlinearBeamformer::ApplyMaskTimeSmoothing() { |
442 for (size_t i = low_mean_start_bin_; i <= high_mean_end_bin_; ++i) { | 442 for (size_t i = low_mean_start_bin_; i <= high_mean_end_bin_; ++i) { |
(...skipping 64 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
507 new_mask_ + high_mean_end_bin_ + 1); | 507 new_mask_ + high_mean_end_bin_ + 1); |
508 if (new_mask_[quantile] > kMaskTargetThreshold) { | 508 if (new_mask_[quantile] > kMaskTargetThreshold) { |
509 is_target_present_ = true; | 509 is_target_present_ = true; |
510 interference_blocks_count_ = 0; | 510 interference_blocks_count_ = 0; |
511 } else { | 511 } else { |
512 is_target_present_ = interference_blocks_count_++ < hold_target_blocks_; | 512 is_target_present_ = interference_blocks_count_++ < hold_target_blocks_; |
513 } | 513 } |
514 } | 514 } |
515 | 515 |
516 } // namespace webrtc | 516 } // namespace webrtc |
OLD | NEW |