Index: webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc |
diff --git a/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc b/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc |
index 145cc0872866db4effc4715000b979e54d5e723e..dedfb2bc4b80db9ff157db2583800580c2b2118c 100644 |
--- a/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc |
+++ b/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc |
@@ -63,11 +63,11 @@ inline complex<float> zerofudge(complex<float> c) { |
// mean |mean| with added |data|. |
inline complex<float> NewMean(complex<float> mean, |
complex<float> data, |
- int count) { |
+ size_t count) { |
return mean + (data - mean) / static_cast<float>(count); |
} |
-inline void AddToMean(complex<float> data, int count, complex<float>* mean) { |
+inline void AddToMean(complex<float> data, size_t count, complex<float>* mean) { |
(*mean) = NewMean(*mean, data, count); |
} |
@@ -79,11 +79,11 @@ namespace webrtc { |
namespace intelligibility { |
-static const int kWindowBlockSize = 10; |
+static const size_t kWindowBlockSize = 10; |
-VarianceArray::VarianceArray(int freqs, |
+VarianceArray::VarianceArray(size_t freqs, |
StepType type, |
- int window_size, |
+ size_t window_size, |
float decay) |
: running_mean_(new complex<float>[freqs]()), |
running_mean_sq_(new complex<float>[freqs]()), |
@@ -98,15 +98,15 @@ VarianceArray::VarianceArray(int freqs, |
count_(0), |
array_mean_(0.0f) { |
history_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); |
- for (int i = 0; i < freqs_; ++i) { |
+ for (size_t i = 0; i < freqs_; ++i) { |
history_[i].reset(new complex<float>[window_size_]()); |
} |
subhistory_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); |
- for (int i = 0; i < freqs_; ++i) { |
+ for (size_t i = 0; i < freqs_; ++i) { |
subhistory_[i].reset(new complex<float>[window_size_]()); |
} |
subhistory_sq_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); |
- for (int i = 0; i < freqs_; ++i) { |
+ for (size_t i = 0; i < freqs_; ++i) { |
subhistory_sq_[i].reset(new complex<float>[window_size_]()); |
} |
switch (type) { |
@@ -130,7 +130,7 @@ VarianceArray::VarianceArray(int freqs, |
void VarianceArray::InfiniteStep(const complex<float>* data, bool skip_fudge) { |
array_mean_ = 0.0f; |
++count_; |
- for (int i = 0; i < freqs_; ++i) { |
+ for (size_t i = 0; i < freqs_; ++i) { |
complex<float> sample = data[i]; |
if (!skip_fudge) { |
sample = zerofudge(sample); |
@@ -148,9 +148,9 @@ void VarianceArray::InfiniteStep(const complex<float>* data, bool skip_fudge) { |
.real(); |
variance_[i] = |
conj_sum_[i] / (count_ - 1); // + fudge[fudge_index].real(); |
- if (skip_fudge && false) { |
- // variance_[i] -= fudge[fudge_index].real(); |
- } |
+ // if (skip_fudge) { |
+ // variance_[i] -= fudge[fudge_index].real(); |
+ // } |
} |
array_mean_ += (variance_[i] - array_mean_) / (i + 1); |
} |
@@ -161,7 +161,7 @@ void VarianceArray::InfiniteStep(const complex<float>* data, bool skip_fudge) { |
void VarianceArray::DecayStep(const complex<float>* data, bool /*dummy*/) { |
array_mean_ = 0.0f; |
++count_; |
- for (int i = 0; i < freqs_; ++i) { |
+ for (size_t i = 0; i < freqs_; ++i) { |
complex<float> sample = data[i]; |
sample = zerofudge(sample); |
@@ -189,9 +189,9 @@ void VarianceArray::DecayStep(const complex<float>* data, bool /*dummy*/) { |
// Windowed variance computation. On each step, the variances for the |
// window are recomputed from scratch, using Welford's algorithm. |
void VarianceArray::WindowedStep(const complex<float>* data, bool /*dummy*/) { |
- int num = min(count_ + 1, window_size_); |
+ size_t num = min(count_ + 1, window_size_); |
array_mean_ = 0.0f; |
- for (int i = 0; i < freqs_; ++i) { |
+ for (size_t i = 0; i < freqs_; ++i) { |
complex<float> mean; |
float conj_sum = 0.0f; |
@@ -199,7 +199,7 @@ void VarianceArray::WindowedStep(const complex<float>* data, bool /*dummy*/) { |
mean = history_[i][history_cursor_]; |
variance_[i] = 0.0f; |
- for (int j = 1; j < num; ++j) { |
+ for (size_t j = 1; j < num; ++j) { |
complex<float> sample = |
zerofudge(history_[i][(history_cursor_ + j) % window_size_]); |
sample = history_[i][(history_cursor_ + j) % window_size_]; |
@@ -223,8 +223,8 @@ void VarianceArray::WindowedStep(const complex<float>* data, bool /*dummy*/) { |
// history window and a new block is started. The variances for the window |
// are recomputed from scratch at each of these transitions. |
void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) { |
- int blocks = min(window_size_, history_cursor_); |
- for (int i = 0; i < freqs_; ++i) { |
+ size_t blocks = min(window_size_, history_cursor_); |
+ for (size_t i = 0; i < freqs_; ++i) { |
AddToMean(data[i], count_ + 1, &sub_running_mean_[i]); |
AddToMean(data[i] * std::conj(data[i]), count_ + 1, |
&sub_running_mean_sq_[i]); |
@@ -241,7 +241,7 @@ void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) { |
sub_running_mean_sq_[i] = complex<float>(0.0f, 0.0f); |
running_mean_[i] = complex<float>(0.0f, 0.0f); |
running_mean_sq_[i] = complex<float>(0.0f, 0.0f); |
- for (int j = 0; j < min(window_size_, history_cursor_); ++j) { |
+ for (size_t j = 0; j < min(window_size_, history_cursor_); ++j) { |
AddToMean(subhistory_[i][j], j, &running_mean_[i]); |
AddToMean(subhistory_sq_[i][j], j, &running_mean_sq_[i]); |
} |
@@ -266,18 +266,18 @@ void VarianceArray::Clear() { |
void VarianceArray::ApplyScale(float scale) { |
array_mean_ = 0.0f; |
- for (int i = 0; i < freqs_; ++i) { |
+ for (size_t i = 0; i < freqs_; ++i) { |
variance_[i] *= scale * scale; |
array_mean_ += (variance_[i] - array_mean_) / (i + 1); |
} |
} |
-GainApplier::GainApplier(int freqs, float change_limit) |
+GainApplier::GainApplier(size_t freqs, float change_limit) |
: freqs_(freqs), |
change_limit_(change_limit), |
target_(new float[freqs]()), |
current_(new float[freqs]()) { |
- for (int i = 0; i < freqs; ++i) { |
+ for (size_t i = 0; i < freqs; ++i) { |
target_[i] = 1.0f; |
current_[i] = 1.0f; |
} |
@@ -285,7 +285,7 @@ GainApplier::GainApplier(int freqs, float change_limit) |
void GainApplier::Apply(const complex<float>* in_block, |
complex<float>* out_block) { |
- for (int i = 0; i < freqs_; ++i) { |
+ for (size_t i = 0; i < freqs_; ++i) { |
float factor = sqrtf(fabsf(current_[i])); |
if (!std::isnormal(factor)) { |
factor = 1.0f; |