Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(666)

Side by Side Diff: webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc

Issue 1227213002: Update audio code to use size_t more correctly, webrtc/modules/audio_processing/ (Closed) Base URL: https://chromium.googlesource.com/external/webrtc@master
Patch Set: Created 5 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* 1 /*
2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
3 * 3 *
4 * Use of this source code is governed by a BSD-style license 4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source 5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found 6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may 7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree. 8 * be found in the AUTHORS file in the root of the source tree.
9 */ 9 */
10 10
(...skipping 45 matching lines...) Expand 10 before | Expand all | Expand 10 after
56 fudge_index = (fudge_index + 1) % 7; 56 fudge_index = (fudge_index + 1) % 7;
57 return c + fudge[fudge_index]; 57 return c + fudge[fudge_index];
58 } 58 }
59 return c; 59 return c;
60 } 60 }
61 61
62 // Incremental mean computation. Return the mean of the series with the 62 // Incremental mean computation. Return the mean of the series with the
63 // mean |mean| with added |data|. 63 // mean |mean| with added |data|.
64 inline complex<float> NewMean(complex<float> mean, 64 inline complex<float> NewMean(complex<float> mean,
65 complex<float> data, 65 complex<float> data,
66 int count) { 66 size_t count) {
67 return mean + (data - mean) / static_cast<float>(count); 67 return mean + (data - mean) / static_cast<float>(count);
68 } 68 }
69 69
70 inline void AddToMean(complex<float> data, int count, complex<float>* mean) { 70 inline void AddToMean(complex<float> data, size_t count, complex<float>* mean) {
71 (*mean) = NewMean(*mean, data, count); 71 (*mean) = NewMean(*mean, data, count);
72 } 72 }
73 73
74 } // namespace 74 } // namespace
75 75
76 using std::min; 76 using std::min;
77 77
78 namespace webrtc { 78 namespace webrtc {
79 79
80 namespace intelligibility { 80 namespace intelligibility {
81 81
82 static const int kWindowBlockSize = 10; 82 static const size_t kWindowBlockSize = 10;
83 83
84 VarianceArray::VarianceArray(int freqs, 84 VarianceArray::VarianceArray(size_t freqs,
85 StepType type, 85 StepType type,
86 int window_size, 86 size_t window_size,
87 float decay) 87 float decay)
88 : running_mean_(new complex<float>[freqs]()), 88 : running_mean_(new complex<float>[freqs]()),
89 running_mean_sq_(new complex<float>[freqs]()), 89 running_mean_sq_(new complex<float>[freqs]()),
90 sub_running_mean_(new complex<float>[freqs]()), 90 sub_running_mean_(new complex<float>[freqs]()),
91 sub_running_mean_sq_(new complex<float>[freqs]()), 91 sub_running_mean_sq_(new complex<float>[freqs]()),
92 variance_(new float[freqs]()), 92 variance_(new float[freqs]()),
93 conj_sum_(new float[freqs]()), 93 conj_sum_(new float[freqs]()),
94 freqs_(freqs), 94 freqs_(freqs),
95 window_size_(window_size), 95 window_size_(window_size),
96 decay_(decay), 96 decay_(decay),
97 history_cursor_(0), 97 history_cursor_(0),
98 count_(0), 98 count_(0),
99 array_mean_(0.0f) { 99 array_mean_(0.0f) {
100 history_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); 100 history_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]());
101 for (int i = 0; i < freqs_; ++i) { 101 for (size_t i = 0; i < freqs_; ++i) {
102 history_[i].reset(new complex<float>[window_size_]()); 102 history_[i].reset(new complex<float>[window_size_]());
103 } 103 }
104 subhistory_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); 104 subhistory_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]());
105 for (int i = 0; i < freqs_; ++i) { 105 for (size_t i = 0; i < freqs_; ++i) {
106 subhistory_[i].reset(new complex<float>[window_size_]()); 106 subhistory_[i].reset(new complex<float>[window_size_]());
107 } 107 }
108 subhistory_sq_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); 108 subhistory_sq_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]());
109 for (int i = 0; i < freqs_; ++i) { 109 for (size_t i = 0; i < freqs_; ++i) {
110 subhistory_sq_[i].reset(new complex<float>[window_size_]()); 110 subhistory_sq_[i].reset(new complex<float>[window_size_]());
111 } 111 }
112 switch (type) { 112 switch (type) {
113 case kStepInfinite: 113 case kStepInfinite:
114 step_func_ = &VarianceArray::InfiniteStep; 114 step_func_ = &VarianceArray::InfiniteStep;
115 break; 115 break;
116 case kStepDecaying: 116 case kStepDecaying:
117 step_func_ = &VarianceArray::DecayStep; 117 step_func_ = &VarianceArray::DecayStep;
118 break; 118 break;
119 case kStepWindowed: 119 case kStepWindowed:
120 step_func_ = &VarianceArray::WindowedStep; 120 step_func_ = &VarianceArray::WindowedStep;
121 break; 121 break;
122 case kStepBlocked: 122 case kStepBlocked:
123 step_func_ = &VarianceArray::BlockedStep; 123 step_func_ = &VarianceArray::BlockedStep;
124 break; 124 break;
125 } 125 }
126 } 126 }
127 127
128 // Compute the variance with Welford's algorithm, adding some fudge to 128 // Compute the variance with Welford's algorithm, adding some fudge to
129 // the input in case of all-zeroes. 129 // the input in case of all-zeroes.
130 void VarianceArray::InfiniteStep(const complex<float>* data, bool skip_fudge) { 130 void VarianceArray::InfiniteStep(const complex<float>* data, bool skip_fudge) {
131 array_mean_ = 0.0f; 131 array_mean_ = 0.0f;
132 ++count_; 132 ++count_;
133 for (int i = 0; i < freqs_; ++i) { 133 for (size_t i = 0; i < freqs_; ++i) {
134 complex<float> sample = data[i]; 134 complex<float> sample = data[i];
135 if (!skip_fudge) { 135 if (!skip_fudge) {
136 sample = zerofudge(sample); 136 sample = zerofudge(sample);
137 } 137 }
138 if (count_ == 1) { 138 if (count_ == 1) {
139 running_mean_[i] = sample; 139 running_mean_[i] = sample;
140 variance_[i] = 0.0f; 140 variance_[i] = 0.0f;
141 } else { 141 } else {
142 float old_sum = conj_sum_[i]; 142 float old_sum = conj_sum_[i];
143 complex<float> old_mean = running_mean_[i]; 143 complex<float> old_mean = running_mean_[i];
144 running_mean_[i] = 144 running_mean_[i] =
145 old_mean + (sample - old_mean) / static_cast<float>(count_); 145 old_mean + (sample - old_mean) / static_cast<float>(count_);
146 conj_sum_[i] = 146 conj_sum_[i] =
147 (old_sum + std::conj(sample - old_mean) * (sample - running_mean_[i])) 147 (old_sum + std::conj(sample - old_mean) * (sample - running_mean_[i]))
148 .real(); 148 .real();
149 variance_[i] = 149 variance_[i] =
150 conj_sum_[i] / (count_ - 1); // + fudge[fudge_index].real(); 150 conj_sum_[i] / (count_ - 1); // + fudge[fudge_index].real();
151 if (skip_fudge && false) { 151 // if (skip_fudge) {
152 // variance_[i] -= fudge[fudge_index].real(); 152 // variance_[i] -= fudge[fudge_index].real();
153 } 153 // }
154 } 154 }
155 array_mean_ += (variance_[i] - array_mean_) / (i + 1); 155 array_mean_ += (variance_[i] - array_mean_) / (i + 1);
156 } 156 }
157 } 157 }
158 158
159 // Compute the variance from the beginning, with exponential decaying of the 159 // Compute the variance from the beginning, with exponential decaying of the
160 // series data. 160 // series data.
161 void VarianceArray::DecayStep(const complex<float>* data, bool /*dummy*/) { 161 void VarianceArray::DecayStep(const complex<float>* data, bool /*dummy*/) {
162 array_mean_ = 0.0f; 162 array_mean_ = 0.0f;
163 ++count_; 163 ++count_;
164 for (int i = 0; i < freqs_; ++i) { 164 for (size_t i = 0; i < freqs_; ++i) {
165 complex<float> sample = data[i]; 165 complex<float> sample = data[i];
166 sample = zerofudge(sample); 166 sample = zerofudge(sample);
167 167
168 if (count_ == 1) { 168 if (count_ == 1) {
169 running_mean_[i] = sample; 169 running_mean_[i] = sample;
170 running_mean_sq_[i] = sample * std::conj(sample); 170 running_mean_sq_[i] = sample * std::conj(sample);
171 variance_[i] = 0.0f; 171 variance_[i] = 0.0f;
172 } else { 172 } else {
173 complex<float> prev = running_mean_[i]; 173 complex<float> prev = running_mean_[i];
174 complex<float> prev2 = running_mean_sq_[i]; 174 complex<float> prev2 = running_mean_sq_[i];
175 running_mean_[i] = decay_ * prev + (1.0f - decay_) * sample; 175 running_mean_[i] = decay_ * prev + (1.0f - decay_) * sample;
176 running_mean_sq_[i] = 176 running_mean_sq_[i] =
177 decay_ * prev2 + (1.0f - decay_) * sample * std::conj(sample); 177 decay_ * prev2 + (1.0f - decay_) * sample * std::conj(sample);
178 // variance_[i] = decay_ * variance_[i] + (1.0f - decay_) * ( 178 // variance_[i] = decay_ * variance_[i] + (1.0f - decay_) * (
179 // (sample - running_mean_[i]) * std::conj(sample - 179 // (sample - running_mean_[i]) * std::conj(sample -
180 // running_mean_[i])).real(); 180 // running_mean_[i])).real();
181 variance_[i] = (running_mean_sq_[i] - 181 variance_[i] = (running_mean_sq_[i] -
182 running_mean_[i] * std::conj(running_mean_[i])).real(); 182 running_mean_[i] * std::conj(running_mean_[i])).real();
183 } 183 }
184 184
185 array_mean_ += (variance_[i] - array_mean_) / (i + 1); 185 array_mean_ += (variance_[i] - array_mean_) / (i + 1);
186 } 186 }
187 } 187 }
188 188
189 // Windowed variance computation. On each step, the variances for the 189 // Windowed variance computation. On each step, the variances for the
190 // window are recomputed from scratch, using Welford's algorithm. 190 // window are recomputed from scratch, using Welford's algorithm.
191 void VarianceArray::WindowedStep(const complex<float>* data, bool /*dummy*/) { 191 void VarianceArray::WindowedStep(const complex<float>* data, bool /*dummy*/) {
192 int num = min(count_ + 1, window_size_); 192 size_t num = min(count_ + 1, window_size_);
193 array_mean_ = 0.0f; 193 array_mean_ = 0.0f;
194 for (int i = 0; i < freqs_; ++i) { 194 for (size_t i = 0; i < freqs_; ++i) {
195 complex<float> mean; 195 complex<float> mean;
196 float conj_sum = 0.0f; 196 float conj_sum = 0.0f;
197 197
198 history_[i][history_cursor_] = data[i]; 198 history_[i][history_cursor_] = data[i];
199 199
200 mean = history_[i][history_cursor_]; 200 mean = history_[i][history_cursor_];
201 variance_[i] = 0.0f; 201 variance_[i] = 0.0f;
202 for (int j = 1; j < num; ++j) { 202 for (size_t j = 1; j < num; ++j) {
203 complex<float> sample = 203 complex<float> sample =
204 zerofudge(history_[i][(history_cursor_ + j) % window_size_]); 204 zerofudge(history_[i][(history_cursor_ + j) % window_size_]);
205 sample = history_[i][(history_cursor_ + j) % window_size_]; 205 sample = history_[i][(history_cursor_ + j) % window_size_];
206 float old_sum = conj_sum; 206 float old_sum = conj_sum;
207 complex<float> old_mean = mean; 207 complex<float> old_mean = mean;
208 208
209 mean = old_mean + (sample - old_mean) / static_cast<float>(j + 1); 209 mean = old_mean + (sample - old_mean) / static_cast<float>(j + 1);
210 conj_sum = 210 conj_sum =
211 (old_sum + std::conj(sample - old_mean) * (sample - mean)).real(); 211 (old_sum + std::conj(sample - old_mean) * (sample - mean)).real();
212 variance_[i] = conj_sum / (j); 212 variance_[i] = conj_sum / (j);
213 } 213 }
214 array_mean_ += (variance_[i] - array_mean_) / (i + 1); 214 array_mean_ += (variance_[i] - array_mean_) / (i + 1);
215 } 215 }
216 history_cursor_ = (history_cursor_ + 1) % window_size_; 216 history_cursor_ = (history_cursor_ + 1) % window_size_;
217 ++count_; 217 ++count_;
218 } 218 }
219 219
220 // Variance with a window of blocks. Within each block, the variances are 220 // Variance with a window of blocks. Within each block, the variances are
221 // recomputed from scratch at every stp, using |Var(X) = E(X^2) - E^2(X)|. 221 // recomputed from scratch at every stp, using |Var(X) = E(X^2) - E^2(X)|.
222 // Once a block is filled with kWindowBlockSize samples, it is added to the 222 // Once a block is filled with kWindowBlockSize samples, it is added to the
223 // history window and a new block is started. The variances for the window 223 // history window and a new block is started. The variances for the window
224 // are recomputed from scratch at each of these transitions. 224 // are recomputed from scratch at each of these transitions.
225 void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) { 225 void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) {
226 int blocks = min(window_size_, history_cursor_); 226 size_t blocks = min(window_size_, history_cursor_);
227 for (int i = 0; i < freqs_; ++i) { 227 for (size_t i = 0; i < freqs_; ++i) {
228 AddToMean(data[i], count_ + 1, &sub_running_mean_[i]); 228 AddToMean(data[i], count_ + 1, &sub_running_mean_[i]);
229 AddToMean(data[i] * std::conj(data[i]), count_ + 1, 229 AddToMean(data[i] * std::conj(data[i]), count_ + 1,
230 &sub_running_mean_sq_[i]); 230 &sub_running_mean_sq_[i]);
231 subhistory_[i][history_cursor_ % window_size_] = sub_running_mean_[i]; 231 subhistory_[i][history_cursor_ % window_size_] = sub_running_mean_[i];
232 subhistory_sq_[i][history_cursor_ % window_size_] = sub_running_mean_sq_[i]; 232 subhistory_sq_[i][history_cursor_ % window_size_] = sub_running_mean_sq_[i];
233 233
234 variance_[i] = 234 variance_[i] =
235 (NewMean(running_mean_sq_[i], sub_running_mean_sq_[i], blocks) - 235 (NewMean(running_mean_sq_[i], sub_running_mean_sq_[i], blocks) -
236 NewMean(running_mean_[i], sub_running_mean_[i], blocks) * 236 NewMean(running_mean_[i], sub_running_mean_[i], blocks) *
237 std::conj(NewMean(running_mean_[i], sub_running_mean_[i], blocks))) 237 std::conj(NewMean(running_mean_[i], sub_running_mean_[i], blocks)))
238 .real(); 238 .real();
239 if (count_ == kWindowBlockSize - 1) { 239 if (count_ == kWindowBlockSize - 1) {
240 sub_running_mean_[i] = complex<float>(0.0f, 0.0f); 240 sub_running_mean_[i] = complex<float>(0.0f, 0.0f);
241 sub_running_mean_sq_[i] = complex<float>(0.0f, 0.0f); 241 sub_running_mean_sq_[i] = complex<float>(0.0f, 0.0f);
242 running_mean_[i] = complex<float>(0.0f, 0.0f); 242 running_mean_[i] = complex<float>(0.0f, 0.0f);
243 running_mean_sq_[i] = complex<float>(0.0f, 0.0f); 243 running_mean_sq_[i] = complex<float>(0.0f, 0.0f);
244 for (int j = 0; j < min(window_size_, history_cursor_); ++j) { 244 for (size_t j = 0; j < min(window_size_, history_cursor_); ++j) {
245 AddToMean(subhistory_[i][j], j, &running_mean_[i]); 245 AddToMean(subhistory_[i][j], j, &running_mean_[i]);
246 AddToMean(subhistory_sq_[i][j], j, &running_mean_sq_[i]); 246 AddToMean(subhistory_sq_[i][j], j, &running_mean_sq_[i]);
247 } 247 }
248 ++history_cursor_; 248 ++history_cursor_;
249 } 249 }
250 } 250 }
251 ++count_; 251 ++count_;
252 if (count_ == kWindowBlockSize) { 252 if (count_ == kWindowBlockSize) {
253 count_ = 0; 253 count_ = 0;
254 } 254 }
255 } 255 }
256 256
257 void VarianceArray::Clear() { 257 void VarianceArray::Clear() {
258 memset(running_mean_.get(), 0, sizeof(*running_mean_.get()) * freqs_); 258 memset(running_mean_.get(), 0, sizeof(*running_mean_.get()) * freqs_);
259 memset(running_mean_sq_.get(), 0, sizeof(*running_mean_sq_.get()) * freqs_); 259 memset(running_mean_sq_.get(), 0, sizeof(*running_mean_sq_.get()) * freqs_);
260 memset(variance_.get(), 0, sizeof(*variance_.get()) * freqs_); 260 memset(variance_.get(), 0, sizeof(*variance_.get()) * freqs_);
261 memset(conj_sum_.get(), 0, sizeof(*conj_sum_.get()) * freqs_); 261 memset(conj_sum_.get(), 0, sizeof(*conj_sum_.get()) * freqs_);
262 history_cursor_ = 0; 262 history_cursor_ = 0;
263 count_ = 0; 263 count_ = 0;
264 array_mean_ = 0.0f; 264 array_mean_ = 0.0f;
265 } 265 }
266 266
267 void VarianceArray::ApplyScale(float scale) { 267 void VarianceArray::ApplyScale(float scale) {
268 array_mean_ = 0.0f; 268 array_mean_ = 0.0f;
269 for (int i = 0; i < freqs_; ++i) { 269 for (size_t i = 0; i < freqs_; ++i) {
270 variance_[i] *= scale * scale; 270 variance_[i] *= scale * scale;
271 array_mean_ += (variance_[i] - array_mean_) / (i + 1); 271 array_mean_ += (variance_[i] - array_mean_) / (i + 1);
272 } 272 }
273 } 273 }
274 274
275 GainApplier::GainApplier(int freqs, float change_limit) 275 GainApplier::GainApplier(size_t freqs, float change_limit)
276 : freqs_(freqs), 276 : freqs_(freqs),
277 change_limit_(change_limit), 277 change_limit_(change_limit),
278 target_(new float[freqs]()), 278 target_(new float[freqs]()),
279 current_(new float[freqs]()) { 279 current_(new float[freqs]()) {
280 for (int i = 0; i < freqs; ++i) { 280 for (size_t i = 0; i < freqs; ++i) {
281 target_[i] = 1.0f; 281 target_[i] = 1.0f;
282 current_[i] = 1.0f; 282 current_[i] = 1.0f;
283 } 283 }
284 } 284 }
285 285
286 void GainApplier::Apply(const complex<float>* in_block, 286 void GainApplier::Apply(const complex<float>* in_block,
287 complex<float>* out_block) { 287 complex<float>* out_block) {
288 for (int i = 0; i < freqs_; ++i) { 288 for (size_t i = 0; i < freqs_; ++i) {
289 float factor = sqrtf(fabsf(current_[i])); 289 float factor = sqrtf(fabsf(current_[i]));
290 if (!std::isnormal(factor)) { 290 if (!std::isnormal(factor)) {
291 factor = 1.0f; 291 factor = 1.0f;
292 } 292 }
293 out_block[i] = factor * in_block[i]; 293 out_block[i] = factor * in_block[i];
294 current_[i] = UpdateFactor(target_[i], current_[i], change_limit_); 294 current_[i] = UpdateFactor(target_[i], current_[i], change_limit_);
295 } 295 }
296 } 296 }
297 297
298 } // namespace intelligibility 298 } // namespace intelligibility
299 299
300 } // namespace webrtc 300 } // namespace webrtc
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698