Index: webrtc/modules/audio_processing/intelligibility/intelligibility_utils_unittest.cc |
diff --git a/webrtc/modules/audio_processing/intelligibility/intelligibility_utils_unittest.cc b/webrtc/modules/audio_processing/intelligibility/intelligibility_utils_unittest.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..ca5567cdedb2d3f6bffdce5c192fff727432e5cd |
--- /dev/null |
+++ b/webrtc/modules/audio_processing/intelligibility/intelligibility_utils_unittest.cc |
@@ -0,0 +1,188 @@ |
+/* |
+ * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. |
+ * |
+ * Use of this source code is governed by a BSD-style license |
+ * that can be found in the LICENSE file in the root of the source |
+ * tree. An additional intellectual property rights grant can be found |
+ * in the file PATENTS. All contributing project authors may |
+ * be found in the AUTHORS file in the root of the source tree. |
+ */ |
+ |
+// |
+// Unit tests for intelligibility utils. |
+// |
+ |
+#include <math.h> |
+#include <complex> |
+#include <iostream> |
+#include <vector> |
+ |
+#include "testing/gtest/include/gtest/gtest.h" |
+#include "webrtc/base/arraysize.h" |
+#include "webrtc/modules/audio_processing/intelligibility/intelligibility_utils.h" |
+ |
+using std::complex; |
+using std::vector; |
+ |
+namespace webrtc { |
+ |
+namespace intelligibility { |
+ |
+vector<vector<complex<float>>> GenerateTestData(int freqs, int samples) { |
+ vector<vector<complex<float>>> data(samples); |
+ for (int i = 0; i < samples; i++) { |
+ for (int j = 0; j < freqs; j++) { |
+ const float val = 0.99f / ((i + 1) * (j + 1)); |
+ data[i].push_back(complex<float>(val, val)); |
+ } |
+ } |
+ return data; |
+} |
+ |
+// Tests UpdateFactor. |
+TEST(IntelligibilityUtilsTest, TestUpdateFactor) { |
+ EXPECT_EQ(0, intelligibility::UpdateFactor(0, 0, 0)); |
+ EXPECT_EQ(4, intelligibility::UpdateFactor(4, 2, 3)); |
+ EXPECT_EQ(3, intelligibility::UpdateFactor(4, 2, 1)); |
+ EXPECT_EQ(2, intelligibility::UpdateFactor(2, 4, 3)); |
+ EXPECT_EQ(3, intelligibility::UpdateFactor(2, 4, 1)); |
+} |
+ |
+// Tests cplxfinite, cplxnormal, and zerofudge. |
+TEST(IntelligibilityUtilsTest, TestCplx) { |
+ complex<float> t0(1.f, 0.f); |
+ EXPECT_TRUE(intelligibility::cplxfinite(t0)); |
+ EXPECT_FALSE(intelligibility::cplxnormal(t0)); |
+ t0 = intelligibility::zerofudge(t0); |
+ EXPECT_NE(t0.imag(), 0.f); |
+ EXPECT_NE(t0.real(), 0.f); |
+ const complex<float> t1(1.f, std::sqrt(-1.f)); |
+ EXPECT_FALSE(intelligibility::cplxfinite(t1)); |
+ EXPECT_FALSE(intelligibility::cplxnormal(t1)); |
+ const complex<float> t2(1.f, 1.f); |
+ EXPECT_TRUE(intelligibility::cplxfinite(t2)); |
+ EXPECT_TRUE(intelligibility::cplxnormal(t2)); |
+} |
+ |
+// Tests NewMean and AddToMean. |
+TEST(IntelligibilityUtilsTest, TestMeanUpdate) { |
+ const complex<float> data[] = {{3, 8}, {7, 6}, {2, 1}, {8, 9}, {0, 6}}; |
+ const complex<float> means[] = {{3, 8}, {5, 7}, {4, 5}, {5, 6}, {4, 6}}; |
+ complex<float> mean(3, 8); |
+ for (size_t i = 0; i < arraysize(data); i++) { |
+ EXPECT_EQ(means[i], NewMean(mean, data[i], i + 1)); |
+ AddToMean(data[i], i + 1, &mean); |
+ EXPECT_EQ(means[i], mean); |
+ } |
+} |
+ |
+// Tests VarianceArray, for all variance step types. |
+TEST(IntelligibilityUtilsTest, TestVarianceArray) { |
+ const int kFreqs = 10; |
+ const int kSamples = 100; |
+ const int kWindowSize = 10; // Should pass for all kWindowSize > 1. |
+ const float kDecay = 0.5f; |
+ vector<VarianceArray::StepType> step_types; |
+ step_types.push_back(VarianceArray::kStepInfinite); |
+ step_types.push_back(VarianceArray::kStepDecaying); |
+ step_types.push_back(VarianceArray::kStepWindowed); |
+ step_types.push_back(VarianceArray::kStepBlocked); |
+ step_types.push_back(VarianceArray::kStepBlockBasedMovingAverage); |
+ const vector<vector<complex<float>>> test_data( |
+ GenerateTestData(kFreqs, kSamples)); |
+ for (auto step_type : step_types) { |
+ VarianceArray variance_array(kFreqs, step_type, kWindowSize, kDecay); |
+ EXPECT_EQ(0, variance_array.variance()[0]); |
+ EXPECT_EQ(0, variance_array.array_mean()); |
+ variance_array.ApplyScale(2.0f); |
+ EXPECT_EQ(0, variance_array.variance()[0]); |
+ EXPECT_EQ(0, variance_array.array_mean()); |
+ |
+ // Makes sure Step is doing something. |
+ variance_array.Step(&test_data[0][0]); |
+ for (int i = 1; i < kSamples; i++) { |
+ variance_array.Step(&test_data[i][0]); |
+ EXPECT_GE(variance_array.array_mean(), 0.0f); |
+ EXPECT_LE(variance_array.array_mean(), 1.0f); |
+ for (int j = 0; j < kFreqs; j++) { |
+ EXPECT_GE(variance_array.variance()[j], 0.0f); |
+ EXPECT_LE(variance_array.variance()[j], 1.0f); |
+ } |
+ } |
+ variance_array.Clear(); |
+ EXPECT_EQ(0, variance_array.variance()[0]); |
+ EXPECT_EQ(0, variance_array.array_mean()); |
+ } |
+} |
+ |
+// Tests exact computation on synthetic data. |
+TEST(IntelligibilityUtilsTest, TestMovingBlockAverage) { |
+ // Exact, not unbiased estimates. |
+ const float kTestVarianceBufferNotFull = 16.5f; |
+ const float kTestVarianceBufferFull1 = 66.5f; |
+ const float kTestVarianceBufferFull2 = 333.375f; |
+ const int kFreqs = 2; |
+ const int kSamples = 50; |
+ const int kWindowSize = 2; |
+ const float kDecay = 0.5f; |
+ const float kMaxError = 0.0001f; |
+ |
+ VarianceArray variance_array( |
+ kFreqs, VarianceArray::kStepBlockBasedMovingAverage, kWindowSize, kDecay); |
+ |
+ vector<vector<complex<float>>> test_data(kSamples); |
+ for (int i = 0; i < kSamples; i++) { |
+ for (int j = 0; j < kFreqs; j++) { |
+ if (i < 30) { |
+ test_data[i].push_back(complex<float>(static_cast<float>(kSamples - i), |
+ static_cast<float>(i + 1))); |
+ } else { |
+ test_data[i].push_back(complex<float>(0.f, 0.f)); |
+ } |
+ } |
+ } |
+ |
+ for (int i = 0; i < kSamples; i++) { |
+ variance_array.Step(&test_data[i][0]); |
+ for (int j = 0; j < kFreqs; j++) { |
+ if (i < 9) { // In utils, kWindowBlockSize = 10. |
+ EXPECT_EQ(0, variance_array.variance()[j]); |
+ } else if (i < 19) { |
+ EXPECT_NEAR(kTestVarianceBufferNotFull, variance_array.variance()[j], |
+ kMaxError); |
+ } else if (i < 39) { |
+ EXPECT_NEAR(kTestVarianceBufferFull1, variance_array.variance()[j], |
+ kMaxError); |
+ } else if (i < 49) { |
+ EXPECT_NEAR(kTestVarianceBufferFull2, variance_array.variance()[j], |
+ kMaxError); |
+ } else { |
+ EXPECT_EQ(0, variance_array.variance()[j]); |
+ } |
+ } |
+ } |
+} |
+ |
+// Tests gain applier. |
+TEST(IntelligibilityUtilsTest, TestGainApplier) { |
+ const int kFreqs = 10; |
+ const int kSamples = 100; |
+ const float kChangeLimit = 0.1f; |
+ GainApplier gain_applier(kFreqs, kChangeLimit); |
+ const vector<vector<complex<float>>> in_data( |
+ GenerateTestData(kFreqs, kSamples)); |
+ vector<vector<complex<float>>> out_data(GenerateTestData(kFreqs, kSamples)); |
+ for (int i = 0; i < kSamples; i++) { |
+ gain_applier.Apply(&in_data[i][0], &out_data[i][0]); |
+ for (int j = 0; j < kFreqs; j++) { |
+ EXPECT_GT(out_data[i][j].real(), 0.0f); |
+ EXPECT_LT(out_data[i][j].real(), 1.0f); |
+ EXPECT_GT(out_data[i][j].imag(), 0.0f); |
+ EXPECT_LT(out_data[i][j].imag(), 1.0f); |
+ } |
+ } |
+} |
+ |
+} // namespace intelligibility |
+ |
+} // namespace webrtc |