| Index: webrtc/modules/audio_processing/intelligibility/intelligibility_utils_unittest.cc
 | 
| diff --git a/webrtc/modules/audio_processing/intelligibility/intelligibility_utils_unittest.cc b/webrtc/modules/audio_processing/intelligibility/intelligibility_utils_unittest.cc
 | 
| new file mode 100644
 | 
| index 0000000000000000000000000000000000000000..ca5567cdedb2d3f6bffdce5c192fff727432e5cd
 | 
| --- /dev/null
 | 
| +++ b/webrtc/modules/audio_processing/intelligibility/intelligibility_utils_unittest.cc
 | 
| @@ -0,0 +1,188 @@
 | 
| +/*
 | 
| + *  Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
 | 
| + *
 | 
| + *  Use of this source code is governed by a BSD-style license
 | 
| + *  that can be found in the LICENSE file in the root of the source
 | 
| + *  tree. An additional intellectual property rights grant can be found
 | 
| + *  in the file PATENTS.  All contributing project authors may
 | 
| + *  be found in the AUTHORS file in the root of the source tree.
 | 
| + */
 | 
| +
 | 
| +//
 | 
| +//  Unit tests for intelligibility utils.
 | 
| +//
 | 
| +
 | 
| +#include <math.h>
 | 
| +#include <complex>
 | 
| +#include <iostream>
 | 
| +#include <vector>
 | 
| +
 | 
| +#include "testing/gtest/include/gtest/gtest.h"
 | 
| +#include "webrtc/base/arraysize.h"
 | 
| +#include "webrtc/modules/audio_processing/intelligibility/intelligibility_utils.h"
 | 
| +
 | 
| +using std::complex;
 | 
| +using std::vector;
 | 
| +
 | 
| +namespace webrtc {
 | 
| +
 | 
| +namespace intelligibility {
 | 
| +
 | 
| +vector<vector<complex<float>>> GenerateTestData(int freqs, int samples) {
 | 
| +  vector<vector<complex<float>>> data(samples);
 | 
| +  for (int i = 0; i < samples; i++) {
 | 
| +    for (int j = 0; j < freqs; j++) {
 | 
| +      const float val = 0.99f / ((i + 1) * (j + 1));
 | 
| +      data[i].push_back(complex<float>(val, val));
 | 
| +    }
 | 
| +  }
 | 
| +  return data;
 | 
| +}
 | 
| +
 | 
| +// Tests UpdateFactor.
 | 
| +TEST(IntelligibilityUtilsTest, TestUpdateFactor) {
 | 
| +  EXPECT_EQ(0, intelligibility::UpdateFactor(0, 0, 0));
 | 
| +  EXPECT_EQ(4, intelligibility::UpdateFactor(4, 2, 3));
 | 
| +  EXPECT_EQ(3, intelligibility::UpdateFactor(4, 2, 1));
 | 
| +  EXPECT_EQ(2, intelligibility::UpdateFactor(2, 4, 3));
 | 
| +  EXPECT_EQ(3, intelligibility::UpdateFactor(2, 4, 1));
 | 
| +}
 | 
| +
 | 
| +// Tests cplxfinite, cplxnormal, and zerofudge.
 | 
| +TEST(IntelligibilityUtilsTest, TestCplx) {
 | 
| +  complex<float> t0(1.f, 0.f);
 | 
| +  EXPECT_TRUE(intelligibility::cplxfinite(t0));
 | 
| +  EXPECT_FALSE(intelligibility::cplxnormal(t0));
 | 
| +  t0 = intelligibility::zerofudge(t0);
 | 
| +  EXPECT_NE(t0.imag(), 0.f);
 | 
| +  EXPECT_NE(t0.real(), 0.f);
 | 
| +  const complex<float> t1(1.f, std::sqrt(-1.f));
 | 
| +  EXPECT_FALSE(intelligibility::cplxfinite(t1));
 | 
| +  EXPECT_FALSE(intelligibility::cplxnormal(t1));
 | 
| +  const complex<float> t2(1.f, 1.f);
 | 
| +  EXPECT_TRUE(intelligibility::cplxfinite(t2));
 | 
| +  EXPECT_TRUE(intelligibility::cplxnormal(t2));
 | 
| +}
 | 
| +
 | 
| +// Tests NewMean and AddToMean.
 | 
| +TEST(IntelligibilityUtilsTest, TestMeanUpdate) {
 | 
| +  const complex<float> data[] = {{3, 8}, {7, 6}, {2, 1}, {8, 9}, {0, 6}};
 | 
| +  const complex<float> means[] = {{3, 8}, {5, 7}, {4, 5}, {5, 6}, {4, 6}};
 | 
| +  complex<float> mean(3, 8);
 | 
| +  for (size_t i = 0; i < arraysize(data); i++) {
 | 
| +    EXPECT_EQ(means[i], NewMean(mean, data[i], i + 1));
 | 
| +    AddToMean(data[i], i + 1, &mean);
 | 
| +    EXPECT_EQ(means[i], mean);
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +// Tests VarianceArray, for all variance step types.
 | 
| +TEST(IntelligibilityUtilsTest, TestVarianceArray) {
 | 
| +  const int kFreqs = 10;
 | 
| +  const int kSamples = 100;
 | 
| +  const int kWindowSize = 10;  // Should pass for all kWindowSize > 1.
 | 
| +  const float kDecay = 0.5f;
 | 
| +  vector<VarianceArray::StepType> step_types;
 | 
| +  step_types.push_back(VarianceArray::kStepInfinite);
 | 
| +  step_types.push_back(VarianceArray::kStepDecaying);
 | 
| +  step_types.push_back(VarianceArray::kStepWindowed);
 | 
| +  step_types.push_back(VarianceArray::kStepBlocked);
 | 
| +  step_types.push_back(VarianceArray::kStepBlockBasedMovingAverage);
 | 
| +  const vector<vector<complex<float>>> test_data(
 | 
| +      GenerateTestData(kFreqs, kSamples));
 | 
| +  for (auto step_type : step_types) {
 | 
| +    VarianceArray variance_array(kFreqs, step_type, kWindowSize, kDecay);
 | 
| +    EXPECT_EQ(0, variance_array.variance()[0]);
 | 
| +    EXPECT_EQ(0, variance_array.array_mean());
 | 
| +    variance_array.ApplyScale(2.0f);
 | 
| +    EXPECT_EQ(0, variance_array.variance()[0]);
 | 
| +    EXPECT_EQ(0, variance_array.array_mean());
 | 
| +
 | 
| +    // Makes sure Step is doing something.
 | 
| +    variance_array.Step(&test_data[0][0]);
 | 
| +    for (int i = 1; i < kSamples; i++) {
 | 
| +      variance_array.Step(&test_data[i][0]);
 | 
| +      EXPECT_GE(variance_array.array_mean(), 0.0f);
 | 
| +      EXPECT_LE(variance_array.array_mean(), 1.0f);
 | 
| +      for (int j = 0; j < kFreqs; j++) {
 | 
| +        EXPECT_GE(variance_array.variance()[j], 0.0f);
 | 
| +        EXPECT_LE(variance_array.variance()[j], 1.0f);
 | 
| +      }
 | 
| +    }
 | 
| +    variance_array.Clear();
 | 
| +    EXPECT_EQ(0, variance_array.variance()[0]);
 | 
| +    EXPECT_EQ(0, variance_array.array_mean());
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +// Tests exact computation on synthetic data.
 | 
| +TEST(IntelligibilityUtilsTest, TestMovingBlockAverage) {
 | 
| +  // Exact, not unbiased estimates.
 | 
| +  const float kTestVarianceBufferNotFull = 16.5f;
 | 
| +  const float kTestVarianceBufferFull1 = 66.5f;
 | 
| +  const float kTestVarianceBufferFull2 = 333.375f;
 | 
| +  const int kFreqs = 2;
 | 
| +  const int kSamples = 50;
 | 
| +  const int kWindowSize = 2;
 | 
| +  const float kDecay = 0.5f;
 | 
| +  const float kMaxError = 0.0001f;
 | 
| +
 | 
| +  VarianceArray variance_array(
 | 
| +      kFreqs, VarianceArray::kStepBlockBasedMovingAverage, kWindowSize, kDecay);
 | 
| +
 | 
| +  vector<vector<complex<float>>> test_data(kSamples);
 | 
| +  for (int i = 0; i < kSamples; i++) {
 | 
| +    for (int j = 0; j < kFreqs; j++) {
 | 
| +      if (i < 30) {
 | 
| +        test_data[i].push_back(complex<float>(static_cast<float>(kSamples - i),
 | 
| +                                              static_cast<float>(i + 1)));
 | 
| +      } else {
 | 
| +        test_data[i].push_back(complex<float>(0.f, 0.f));
 | 
| +      }
 | 
| +    }
 | 
| +  }
 | 
| +
 | 
| +  for (int i = 0; i < kSamples; i++) {
 | 
| +    variance_array.Step(&test_data[i][0]);
 | 
| +    for (int j = 0; j < kFreqs; j++) {
 | 
| +      if (i < 9) {  // In utils, kWindowBlockSize = 10.
 | 
| +        EXPECT_EQ(0, variance_array.variance()[j]);
 | 
| +      } else if (i < 19) {
 | 
| +        EXPECT_NEAR(kTestVarianceBufferNotFull, variance_array.variance()[j],
 | 
| +                    kMaxError);
 | 
| +      } else if (i < 39) {
 | 
| +        EXPECT_NEAR(kTestVarianceBufferFull1, variance_array.variance()[j],
 | 
| +                    kMaxError);
 | 
| +      } else if (i < 49) {
 | 
| +        EXPECT_NEAR(kTestVarianceBufferFull2, variance_array.variance()[j],
 | 
| +                    kMaxError);
 | 
| +      } else {
 | 
| +        EXPECT_EQ(0, variance_array.variance()[j]);
 | 
| +      }
 | 
| +    }
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +// Tests gain applier.
 | 
| +TEST(IntelligibilityUtilsTest, TestGainApplier) {
 | 
| +  const int kFreqs = 10;
 | 
| +  const int kSamples = 100;
 | 
| +  const float kChangeLimit = 0.1f;
 | 
| +  GainApplier gain_applier(kFreqs, kChangeLimit);
 | 
| +  const vector<vector<complex<float>>> in_data(
 | 
| +      GenerateTestData(kFreqs, kSamples));
 | 
| +  vector<vector<complex<float>>> out_data(GenerateTestData(kFreqs, kSamples));
 | 
| +  for (int i = 0; i < kSamples; i++) {
 | 
| +    gain_applier.Apply(&in_data[i][0], &out_data[i][0]);
 | 
| +    for (int j = 0; j < kFreqs; j++) {
 | 
| +      EXPECT_GT(out_data[i][j].real(), 0.0f);
 | 
| +      EXPECT_LT(out_data[i][j].real(), 1.0f);
 | 
| +      EXPECT_GT(out_data[i][j].imag(), 0.0f);
 | 
| +      EXPECT_LT(out_data[i][j].imag(), 1.0f);
 | 
| +    }
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +}  // namespace intelligibility
 | 
| +
 | 
| +}  // namespace webrtc
 | 
| 
 |