| Index: webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc
|
| diff --git a/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc b/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc
|
| index 145cc0872866db4effc4715000b979e54d5e723e..d67d200689f1613391c18c138b55f504a18ffde4 100644
|
| --- a/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc
|
| +++ b/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc
|
| @@ -14,36 +14,32 @@
|
|
|
| #include "webrtc/modules/audio_processing/intelligibility/intelligibility_utils.h"
|
|
|
| +#include <math.h>
|
| +#include <string.h>
|
| #include <algorithm>
|
| -#include <cmath>
|
| -#include <cstring>
|
|
|
| using std::complex;
|
| +using std::min;
|
| +
|
| +namespace webrtc {
|
|
|
| -namespace {
|
| +namespace intelligibility {
|
|
|
| -// Return |current| changed towards |target|, with the change being at most
|
| -// |limit|.
|
| -inline float UpdateFactor(float target, float current, float limit) {
|
| +float UpdateFactor(float target, float current, float limit) {
|
| float delta = fabsf(target - current);
|
| float sign = copysign(1.0f, target - current);
|
| return current + sign * fminf(delta, limit);
|
| }
|
|
|
| -// std::isfinite for complex numbers.
|
| -inline bool cplxfinite(complex<float> c) {
|
| +bool cplxfinite(complex<float> c) {
|
| return std::isfinite(c.real()) && std::isfinite(c.imag());
|
| }
|
|
|
| -// std::isnormal for complex numbers.
|
| -inline bool cplxnormal(complex<float> c) {
|
| +bool cplxnormal(complex<float> c) {
|
| return std::isnormal(c.real()) && std::isnormal(c.imag());
|
| }
|
|
|
| -// Apply a small fudge to degenerate complex values. The numbers in the array
|
| -// were chosen randomly, so that even a series of all zeroes has some small
|
| -// variability.
|
| -inline complex<float> zerofudge(complex<float> c) {
|
| +complex<float> zerofudge(complex<float> c) {
|
| const static complex<float> fudge[7] = {{0.001f, 0.002f},
|
| {0.008f, 0.001f},
|
| {0.003f, 0.008f},
|
| @@ -59,25 +55,14 @@ inline complex<float> zerofudge(complex<float> c) {
|
| return c;
|
| }
|
|
|
| -// Incremental mean computation. Return the mean of the series with the
|
| -// mean |mean| with added |data|.
|
| -inline complex<float> NewMean(complex<float> mean,
|
| - complex<float> data,
|
| - int count) {
|
| +complex<float> NewMean(complex<float> mean, complex<float> data, int count) {
|
| return mean + (data - mean) / static_cast<float>(count);
|
| }
|
|
|
| -inline void AddToMean(complex<float> data, int count, complex<float>* mean) {
|
| +void AddToMean(complex<float> data, int count, complex<float>* mean) {
|
| (*mean) = NewMean(*mean, data, count);
|
| }
|
|
|
| -} // namespace
|
| -
|
| -using std::min;
|
| -
|
| -namespace webrtc {
|
| -
|
| -namespace intelligibility {
|
|
|
| static const int kWindowBlockSize = 10;
|
|
|
| @@ -96,7 +81,8 @@ VarianceArray::VarianceArray(int freqs,
|
| decay_(decay),
|
| history_cursor_(0),
|
| count_(0),
|
| - array_mean_(0.0f) {
|
| + array_mean_(0.0f),
|
| + buffer_full_(false) {
|
| history_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]());
|
| for (int i = 0; i < freqs_; ++i) {
|
| history_[i].reset(new complex<float>[window_size_]());
|
| @@ -122,6 +108,9 @@ VarianceArray::VarianceArray(int freqs,
|
| case kStepBlocked:
|
| step_func_ = &VarianceArray::BlockedStep;
|
| break;
|
| + case kStepBlockBasedMovingAverage:
|
| + step_func_ = &VarianceArray::BlockBasedMovingAverage;
|
| + break;
|
| }
|
| }
|
|
|
| @@ -223,7 +212,7 @@ void VarianceArray::WindowedStep(const complex<float>* data, bool /*dummy*/) {
|
| // history window and a new block is started. The variances for the window
|
| // are recomputed from scratch at each of these transitions.
|
| void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) {
|
| - int blocks = min(window_size_, history_cursor_);
|
| + int blocks = min(window_size_, history_cursor_ + 1);
|
| for (int i = 0; i < freqs_; ++i) {
|
| AddToMean(data[i], count_ + 1, &sub_running_mean_[i]);
|
| AddToMean(data[i] * std::conj(data[i]), count_ + 1,
|
| @@ -242,8 +231,8 @@ void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) {
|
| running_mean_[i] = complex<float>(0.0f, 0.0f);
|
| running_mean_sq_[i] = complex<float>(0.0f, 0.0f);
|
| for (int j = 0; j < min(window_size_, history_cursor_); ++j) {
|
| - AddToMean(subhistory_[i][j], j, &running_mean_[i]);
|
| - AddToMean(subhistory_sq_[i][j], j, &running_mean_sq_[i]);
|
| + AddToMean(subhistory_[i][j], j + 1, &running_mean_[i]);
|
| + AddToMean(subhistory_sq_[i][j], j + 1, &running_mean_sq_[i]);
|
| }
|
| ++history_cursor_;
|
| }
|
| @@ -254,6 +243,51 @@ void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) {
|
| }
|
| }
|
|
|
| +// Recomputes variances for each window from scratch based on previous window.
|
| +void VarianceArray::BlockBasedMovingAverage(const std::complex<float>* data,
|
| + bool /*dummy*/) {
|
| + // TODO(ekmeyerson) To mitigate potential divergence, add counter so that
|
| + // after every so often sums are computed scratch by summing over all
|
| + // elements instead of subtracting oldest and adding newest.
|
| + for (int i = 0; i < freqs_; ++i) {
|
| + sub_running_mean_[i] += data[i];
|
| + sub_running_mean_sq_[i] += data[i] * std::conj(data[i]);
|
| + }
|
| + ++count_;
|
| +
|
| + // TODO(ekmeyerson) Make kWindowBlockSize nonconstant to allow
|
| + // experimentation with different block size,window size pairs.
|
| + if (count_ >= kWindowBlockSize) {
|
| + count_ = 0;
|
| +
|
| + for (int i = 0; i < freqs_; ++i) {
|
| + running_mean_[i] -= subhistory_[i][history_cursor_];
|
| + running_mean_sq_[i] -= subhistory_sq_[i][history_cursor_];
|
| +
|
| + float scale = 1.f / kWindowBlockSize;
|
| + subhistory_[i][history_cursor_] = sub_running_mean_[i] * scale;
|
| + subhistory_sq_[i][history_cursor_] = sub_running_mean_sq_[i] * scale;
|
| +
|
| + sub_running_mean_[i] = std::complex<float>(0.0f, 0.0f);
|
| + sub_running_mean_sq_[i] = std::complex<float>(0.0f, 0.0f);
|
| +
|
| + running_mean_[i] += subhistory_[i][history_cursor_];
|
| + running_mean_sq_[i] += subhistory_sq_[i][history_cursor_];
|
| +
|
| + scale = 1.f / (buffer_full_ ? window_size_ : history_cursor_ + 1);
|
| + variance_[i] = std::real(running_mean_sq_[i] * scale -
|
| + running_mean_[i] * scale *
|
| + std::conj(running_mean_[i]) * scale);
|
| + }
|
| +
|
| + ++history_cursor_;
|
| + if (history_cursor_ >= window_size_) {
|
| + buffer_full_ = true;
|
| + history_cursor_ = 0;
|
| + }
|
| + }
|
| +}
|
| +
|
| void VarianceArray::Clear() {
|
| memset(running_mean_.get(), 0, sizeof(*running_mean_.get()) * freqs_);
|
| memset(running_mean_sq_.get(), 0, sizeof(*running_mean_sq_.get()) * freqs_);
|
|
|