| Index: webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc
|
| diff --git a/webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc b/webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc
|
| index 3029e21619a981917f377afb78075bfd66def952..1e766875caedc519004077e4a2ebfc1f993c9262 100644
|
| --- a/webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc
|
| +++ b/webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc
|
| @@ -17,8 +17,8 @@
|
|
|
| #include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.h"
|
|
|
| -#include <cmath>
|
| -#include <cstdlib>
|
| +#include <math.h>
|
| +#include <stdlib.h>
|
|
|
| #include <algorithm>
|
| #include <numeric>
|
| @@ -27,26 +27,24 @@
|
| #include "webrtc/common_audio/vad/include/webrtc_vad.h"
|
| #include "webrtc/common_audio/window_generator.h"
|
|
|
| -using std::complex;
|
| -using std::max;
|
| -using std::min;
|
| -
|
| namespace webrtc {
|
|
|
| -const int IntelligibilityEnhancer::kErbResolution = 2;
|
| -const int IntelligibilityEnhancer::kWindowSizeMs = 2;
|
| -const int IntelligibilityEnhancer::kChunkSizeMs = 10; // Size provided by APM.
|
| -const int IntelligibilityEnhancer::kAnalyzeRate = 800;
|
| -const int IntelligibilityEnhancer::kVarianceRate = 2;
|
| -const float IntelligibilityEnhancer::kClipFreq = 200.0f;
|
| -const float IntelligibilityEnhancer::kConfigRho = 0.02f;
|
| -const float IntelligibilityEnhancer::kKbdAlpha = 1.5f;
|
| +namespace {
|
|
|
| -// To disable gain update smoothing, set gain limit to be VERY high.
|
| -// TODO(ekmeyerson): Add option to disable gain smoothing altogether
|
| -// to avoid the extra computation.
|
| -const float IntelligibilityEnhancer::kGainChangeLimit = 0.0125f;
|
| +const int kErbResolution = 2;
|
| +const int kWindowSizeMs = 2;
|
| +const int kChunkSizeMs = 10; // Size provided by APM.
|
| +const float kClipFreq = 200.0f;
|
| +const float kConfigRho = 0.02f; // Default production and interpretation SNR.
|
| +const float kKbdAlpha = 1.5f;
|
| +const float kLambdaBot = -1.0f; // Extreme values in bisection
|
| +const float kLambdaTop = -10e-18f; // search for lamda.
|
|
|
| +} // namespace
|
| +
|
| +using std::complex;
|
| +using std::max;
|
| +using std::min;
|
| using VarianceType = intelligibility::VarianceArray::StepType;
|
|
|
| IntelligibilityEnhancer::TransformCallback::TransformCallback(
|
| @@ -93,7 +91,7 @@ IntelligibilityEnhancer::IntelligibilityEnhancer(int erb_resolution,
|
| noise_variance_(freqs_, VarianceType::kStepInfinite, 475, 0.01f),
|
| filtered_clear_var_(new float[bank_size_]),
|
| filtered_noise_var_(new float[bank_size_]),
|
| - filter_bank_(nullptr),
|
| + filter_bank_(bank_size_),
|
| center_freqs_(new float[bank_size_]),
|
| rho_(new float[bank_size_]),
|
| gains_eq_(new float[bank_size_]),
|
| @@ -149,7 +147,7 @@ IntelligibilityEnhancer::IntelligibilityEnhancer(int erb_resolution,
|
| IntelligibilityEnhancer::~IntelligibilityEnhancer() {
|
| WebRtcVad_Free(vad_low_);
|
| WebRtcVad_Free(vad_high_);
|
| - free(filter_bank_);
|
| + free(temp_out_buffer_);
|
| }
|
|
|
| void IntelligibilityEnhancer::ProcessRenderAudio(float* const* audio) {
|
| @@ -203,8 +201,6 @@ void IntelligibilityEnhancer::DispatchAudio(
|
|
|
| void IntelligibilityEnhancer::ProcessClearBlock(const complex<float>* in_block,
|
| complex<float>* out_block) {
|
| - float power_target;
|
| -
|
| if (block_count_ < 2) {
|
| memset(out_block, 0, freqs_ * sizeof(*out_block));
|
| ++block_count_;
|
| @@ -216,8 +212,8 @@ void IntelligibilityEnhancer::ProcessClearBlock(const complex<float>* in_block,
|
| // based on experiments with different cutoffs.
|
| if (has_voice_low_ || true) {
|
| clear_variance_.Step(in_block, false);
|
| - power_target = std::accumulate(clear_variance_.variance(),
|
| - clear_variance_.variance() + freqs_, 0.0f);
|
| + const float power_target = std::accumulate(
|
| + clear_variance_.variance(), clear_variance_.variance() + freqs_, 0.0f);
|
|
|
| if (block_count_ % analysis_rate_ == analysis_rate_ - 1) {
|
| AnalyzeClearBlock(power_target);
|
| @@ -239,35 +235,46 @@ void IntelligibilityEnhancer::AnalyzeClearBlock(float power_target) {
|
| FilterVariance(clear_variance_.variance(), filtered_clear_var_.get());
|
| FilterVariance(noise_variance_.variance(), filtered_noise_var_.get());
|
|
|
| - // Bisection search for optimal |lambda|
|
| -
|
| - float lambda_bot = -1.0f, lambda_top = -10e-18f, lambda;
|
| - float power_bot, power_top, power;
|
| - SolveForGainsGivenLambda(lambda_top, start_freq_, gains_eq_.get());
|
| - power_top =
|
| + SolveForGainsGivenLambda(kLambdaTop, start_freq_, gains_eq_.get());
|
| + const float power_top =
|
| DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_);
|
| - SolveForGainsGivenLambda(lambda_bot, start_freq_, gains_eq_.get());
|
| - power_bot =
|
| + SolveForGainsGivenLambda(kLambdaBot, start_freq_, gains_eq_.get());
|
| + const float power_bot =
|
| DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_);
|
| - DCHECK(power_target >= power_bot && power_target <= power_top);
|
| + if (power_target >= power_bot && power_target <= power_top) {
|
| + SolveForLambda(power_target, power_bot, power_top);
|
| + UpdateErbGains();
|
| + } // Else experiencing variance underflow, so do nothing.
|
| +}
|
|
|
| - float power_ratio = 2.0f; // Ratio of achieved power to target power.
|
| +void IntelligibilityEnhancer::SolveForLambda(float power_target,
|
| + float power_bot,
|
| + float power_top) {
|
| const float kConvergeThresh = 0.001f; // TODO(ekmeyerson): Find best values
|
| const int kMaxIters = 100; // for these, based on experiments.
|
| +
|
| + const float reciprocal_power_target = 1.f / power_target;
|
| + float lambda_bot = kLambdaBot;
|
| + float lambda_top = kLambdaTop;
|
| + float power_ratio = 2.0f; // Ratio of achieved power to target power.
|
| int iters = 0;
|
| - while (fabs(power_ratio - 1.0f) > kConvergeThresh && iters <= kMaxIters) {
|
| - lambda = lambda_bot + (lambda_top - lambda_bot) / 2.0f;
|
| + while (std::fabs(power_ratio - 1.0f) > kConvergeThresh &&
|
| + iters <= kMaxIters) {
|
| + const float lambda = lambda_bot + (lambda_top - lambda_bot) / 2.0f;
|
| SolveForGainsGivenLambda(lambda, start_freq_, gains_eq_.get());
|
| - power = DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_);
|
| + const float power =
|
| + DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_);
|
| if (power < power_target) {
|
| lambda_bot = lambda;
|
| } else {
|
| lambda_top = lambda;
|
| }
|
| - power_ratio = fabs(power / power_target);
|
| + power_ratio = std::fabs(power * reciprocal_power_target);
|
| ++iters;
|
| }
|
| +}
|
|
|
| +void IntelligibilityEnhancer::UpdateErbGains() {
|
| // (ERB gain) = filterbank' * (freq gain)
|
| float* gains = gain_applier_.target();
|
| for (int i = 0; i < freqs_; ++i) {
|
| @@ -303,12 +310,8 @@ void IntelligibilityEnhancer::CreateErbBank() {
|
| center_freqs_[i] *= 0.5f * sample_rate_hz_ / last_center_freq;
|
| }
|
|
|
| - filter_bank_ = static_cast<float**>(
|
| - malloc(sizeof(*filter_bank_) * bank_size_ +
|
| - sizeof(**filter_bank_) * freqs_ * bank_size_));
|
| for (int i = 0; i < bank_size_; ++i) {
|
| - filter_bank_[i] =
|
| - reinterpret_cast<float*>(filter_bank_ + bank_size_) + freqs_ * i;
|
| + filter_bank_[i].resize(freqs_);
|
| }
|
|
|
| for (int i = 1; i <= bank_size_; ++i) {
|
| @@ -388,7 +391,7 @@ void IntelligibilityEnhancer::SolveForGainsGivenLambda(float lambda,
|
|
|
| void IntelligibilityEnhancer::FilterVariance(const float* var, float* result) {
|
| for (int i = 0; i < bank_size_; ++i) {
|
| - result[i] = DotProduct(filter_bank_[i], var, freqs_);
|
| + result[i] = DotProduct(filter_bank_[i].data(), var, freqs_);
|
| }
|
| }
|
|
|
|
|