Index: webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc |
diff --git a/webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc b/webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc |
index 3029e21619a981917f377afb78075bfd66def952..c258886f598294df613c7f1800e12dba1ba7a649 100644 |
--- a/webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc |
+++ b/webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc |
@@ -27,26 +27,24 @@ |
#include "webrtc/common_audio/vad/include/webrtc_vad.h" |
#include "webrtc/common_audio/window_generator.h" |
-using std::complex; |
-using std::max; |
-using std::min; |
- |
namespace webrtc { |
-const int IntelligibilityEnhancer::kErbResolution = 2; |
-const int IntelligibilityEnhancer::kWindowSizeMs = 2; |
-const int IntelligibilityEnhancer::kChunkSizeMs = 10; // Size provided by APM. |
-const int IntelligibilityEnhancer::kAnalyzeRate = 800; |
-const int IntelligibilityEnhancer::kVarianceRate = 2; |
-const float IntelligibilityEnhancer::kClipFreq = 200.0f; |
-const float IntelligibilityEnhancer::kConfigRho = 0.02f; |
-const float IntelligibilityEnhancer::kKbdAlpha = 1.5f; |
+namespace { |
+ |
+const int kErbResolution = 2; |
+const int kWindowSizeMs = 2; |
+const int kChunkSizeMs = 10; // Size provided by APM. |
+const float kClipFreq = 200.0f; |
+const float kConfigRho = 0.02f; // Default production and interpretation SNR. |
+const float kKbdAlpha = 1.5f; |
+const float kLambdaBot = -1.0; // Extreme values in bisection |
+const float kLambdaTop = -10e-18f; // search for lamda. |
-// To disable gain update smoothing, set gain limit to be VERY high. |
-// TODO(ekmeyerson): Add option to disable gain smoothing altogether |
-// to avoid the extra computation. |
-const float IntelligibilityEnhancer::kGainChangeLimit = 0.0125f; |
+} // namespace |
+using std::complex; |
+using std::max; |
+using std::min; |
using VarianceType = intelligibility::VarianceArray::StepType; |
IntelligibilityEnhancer::TransformCallback::TransformCallback( |
@@ -203,8 +201,6 @@ void IntelligibilityEnhancer::DispatchAudio( |
void IntelligibilityEnhancer::ProcessClearBlock(const complex<float>* in_block, |
complex<float>* out_block) { |
- float power_target; |
- |
if (block_count_ < 2) { |
memset(out_block, 0, freqs_ * sizeof(*out_block)); |
++block_count_; |
@@ -216,8 +212,8 @@ void IntelligibilityEnhancer::ProcessClearBlock(const complex<float>* in_block, |
// based on experiments with different cutoffs. |
if (has_voice_low_ || true) { |
clear_variance_.Step(in_block, false); |
- power_target = std::accumulate(clear_variance_.variance(), |
- clear_variance_.variance() + freqs_, 0.0f); |
+ const float power_target = std::accumulate( |
+ clear_variance_.variance(), clear_variance_.variance() + freqs_, 0.0f); |
if (block_count_ % analysis_rate_ == analysis_rate_ - 1) { |
AnalyzeClearBlock(power_target); |
@@ -239,26 +235,32 @@ void IntelligibilityEnhancer::AnalyzeClearBlock(float power_target) { |
FilterVariance(clear_variance_.variance(), filtered_clear_var_.get()); |
FilterVariance(noise_variance_.variance(), filtered_noise_var_.get()); |
- // Bisection search for optimal |lambda| |
- |
- float lambda_bot = -1.0f, lambda_top = -10e-18f, lambda; |
- float power_bot, power_top, power; |
- SolveForGainsGivenLambda(lambda_top, start_freq_, gains_eq_.get()); |
- power_top = |
+ SolveForGainsGivenLambda(kLambdaTop, start_freq_, gains_eq_.get()); |
+ const float power_top = |
DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_); |
- SolveForGainsGivenLambda(lambda_bot, start_freq_, gains_eq_.get()); |
- power_bot = |
+ SolveForGainsGivenLambda(kLambdaBot, start_freq_, gains_eq_.get()); |
+ const float power_bot = |
DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_); |
- DCHECK(power_target >= power_bot && power_target <= power_top); |
+ if (power_target >= power_bot && power_target <= power_top) { |
+ SolveForLambda(power_target, power_bot, power_top); |
+ UpdateErbGains(); |
+ } // Else experiencing variance underflow, so do nothing. |
+} |
+void IntelligibilityEnhancer::SolveForLambda(float power_target, |
+ float power_bot, |
+ float power_top) { |
+ float lambda_bot = kLambdaBot; |
+ float lambda_top = kLambdaTop; |
float power_ratio = 2.0f; // Ratio of achieved power to target power. |
const float kConvergeThresh = 0.001f; // TODO(ekmeyerson): Find best values |
const int kMaxIters = 100; // for these, based on experiments. |
int iters = 0; |
while (fabs(power_ratio - 1.0f) > kConvergeThresh && iters <= kMaxIters) { |
Andrew MacDonald
2015/07/09 03:22:46
std::fabs
ekm
2015/07/09 18:19:22
Done.
|
- lambda = lambda_bot + (lambda_top - lambda_bot) / 2.0f; |
+ const float lambda = lambda_bot + (lambda_top - lambda_bot) / 2.0f; |
SolveForGainsGivenLambda(lambda, start_freq_, gains_eq_.get()); |
- power = DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_); |
+ const float power = |
+ DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_); |
if (power < power_target) { |
lambda_bot = lambda; |
} else { |
@@ -267,7 +269,9 @@ void IntelligibilityEnhancer::AnalyzeClearBlock(float power_target) { |
power_ratio = fabs(power / power_target); |
Andrew MacDonald
2015/07/09 03:22:46
To be sure we avoid a divide, outside the loop:
co
ekm
2015/07/09 18:19:22
Done. Nice!
|
++iters; |
} |
+} |
+void IntelligibilityEnhancer::UpdateErbGains() { |
// (ERB gain) = filterbank' * (freq gain) |
float* gains = gain_applier_.target(); |
for (int i = 0; i < freqs_; ++i) { |