Index: webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc |
diff --git a/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc b/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc |
index 145cc0872866db4effc4715000b979e54d5e723e..5426c444068f87965b05699c98de96dada565283 100644 |
--- a/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc |
+++ b/webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc |
@@ -96,7 +96,8 @@ VarianceArray::VarianceArray(int freqs, |
decay_(decay), |
history_cursor_(0), |
count_(0), |
- array_mean_(0.0f) { |
+ array_mean_(0.0f), |
+ buffer_full_(false) { |
history_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); |
for (int i = 0; i < freqs_; ++i) { |
history_[i].reset(new complex<float>[window_size_]()); |
@@ -122,6 +123,9 @@ VarianceArray::VarianceArray(int freqs, |
case kStepBlocked: |
step_func_ = &VarianceArray::BlockedStep; |
break; |
+ case kStepBlockBasedMovingAverage: |
+ step_func_ = &VarianceArray::BlockBasedMovingAverage; |
+ break; |
} |
} |
@@ -223,7 +227,7 @@ void VarianceArray::WindowedStep(const complex<float>* data, bool /*dummy*/) { |
// history window and a new block is started. The variances for the window |
// are recomputed from scratch at each of these transitions. |
void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) { |
- int blocks = min(window_size_, history_cursor_); |
+ int blocks = min(window_size_, history_cursor_ + 1); |
for (int i = 0; i < freqs_; ++i) { |
AddToMean(data[i], count_ + 1, &sub_running_mean_[i]); |
AddToMean(data[i] * std::conj(data[i]), count_ + 1, |
@@ -242,8 +246,8 @@ void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) { |
running_mean_[i] = complex<float>(0.0f, 0.0f); |
running_mean_sq_[i] = complex<float>(0.0f, 0.0f); |
for (int j = 0; j < min(window_size_, history_cursor_); ++j) { |
- AddToMean(subhistory_[i][j], j, &running_mean_[i]); |
- AddToMean(subhistory_sq_[i][j], j, &running_mean_sq_[i]); |
+ AddToMean(subhistory_[i][j], j + 1, &running_mean_[i]); |
+ AddToMean(subhistory_sq_[i][j], j + 1, &running_mean_sq_[i]); |
} |
++history_cursor_; |
} |
@@ -254,6 +258,47 @@ void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) { |
} |
} |
+// Recomputes variances from scratch each window based on previous window. |
+void VarianceArray::BlockBasedMovingAverage( |
turaj
2015/06/26 00:32:58
There is a concern, which is not proven, that keep
ekm
2015/06/26 19:07:09
Interesting. This is just do to floating point err
turaj
2015/06/29 17:33:35
Something like that, but I'm not sure.
|
+ const std::complex<float>* data, bool /*dummy*/) { |
+ for (int i = 0; i < freqs_; ++i) { |
+ sub_running_mean_[i] += data[i]; |
+ sub_running_mean_sq_[i] += data[i] * std::conj(data[i]); |
+ } |
+ ++count_; |
+ |
+ // TODO(ekmeyerson) make kWindowBlockSize nonconstant to allow |
+ // experimentation with different block size,window size pairs. |
+ if (count_ >= kWindowBlockSize) { |
+ count_ = 0; |
+ |
+ for (int i = 0; i < freqs_; ++i) { |
+ running_mean_[i] -= subhistory_[i][history_cursor_]; |
+ running_mean_sq_[i] -= subhistory_sq_[i][history_cursor_]; |
+ |
+ float scale = 1.f / kWindowBlockSize; |
+ subhistory_[i][history_cursor_] = sub_running_mean_[i] * scale; |
+ subhistory_sq_[i][history_cursor_] = sub_running_mean_sq_[i] * scale; |
+ |
+ sub_running_mean_[i] = std::complex<float>(0.0f, 0.0f); |
+ sub_running_mean_sq_[i] = std::complex<float>(0.0f, 0.0f); |
+ |
+ running_mean_[i] += subhistory_[i][history_cursor_]; |
+ running_mean_sq_[i] += subhistory_sq_[i][history_cursor_]; |
+ |
+ scale = 1.f / (buffer_full_ ? window_size_ : history_cursor_ + 1); |
+ variance_[i] = std::real(running_mean_sq_[i] * scale - running_mean_[i] * |
+ scale * std::conj(running_mean_[i]) * scale); |
+ } |
+ |
+ ++history_cursor_; |
+ if (history_cursor_ >= window_size_) { |
+ buffer_full_ = true; |
+ history_cursor_ = 0; |
+ } |
+ } |
+} |
+ |
void VarianceArray::Clear() { |
memset(running_mean_.get(), 0, sizeof(*running_mean_.get()) * freqs_); |
memset(running_mean_sq_.get(), 0, sizeof(*running_mean_sq_.get()) * freqs_); |