OLD | NEW |
---|---|
1 /* | 1 /* |
2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. | 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
9 */ | 9 */ |
10 | 10 |
(...skipping 78 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
89 running_mean_sq_(new complex<float>[freqs]()), | 89 running_mean_sq_(new complex<float>[freqs]()), |
90 sub_running_mean_(new complex<float>[freqs]()), | 90 sub_running_mean_(new complex<float>[freqs]()), |
91 sub_running_mean_sq_(new complex<float>[freqs]()), | 91 sub_running_mean_sq_(new complex<float>[freqs]()), |
92 variance_(new float[freqs]()), | 92 variance_(new float[freqs]()), |
93 conj_sum_(new float[freqs]()), | 93 conj_sum_(new float[freqs]()), |
94 freqs_(freqs), | 94 freqs_(freqs), |
95 window_size_(window_size), | 95 window_size_(window_size), |
96 decay_(decay), | 96 decay_(decay), |
97 history_cursor_(0), | 97 history_cursor_(0), |
98 count_(0), | 98 count_(0), |
99 array_mean_(0.0f) { | 99 array_mean_(0.0f), |
100 buffer_full_(false) { | |
100 history_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); | 101 history_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); |
101 for (int i = 0; i < freqs_; ++i) { | 102 for (int i = 0; i < freqs_; ++i) { |
102 history_[i].reset(new complex<float>[window_size_]()); | 103 history_[i].reset(new complex<float>[window_size_]()); |
103 } | 104 } |
104 subhistory_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); | 105 subhistory_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); |
105 for (int i = 0; i < freqs_; ++i) { | 106 for (int i = 0; i < freqs_; ++i) { |
106 subhistory_[i].reset(new complex<float>[window_size_]()); | 107 subhistory_[i].reset(new complex<float>[window_size_]()); |
107 } | 108 } |
108 subhistory_sq_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); | 109 subhistory_sq_.reset(new rtc::scoped_ptr<complex<float>[]>[freqs_]()); |
109 for (int i = 0; i < freqs_; ++i) { | 110 for (int i = 0; i < freqs_; ++i) { |
110 subhistory_sq_[i].reset(new complex<float>[window_size_]()); | 111 subhistory_sq_[i].reset(new complex<float>[window_size_]()); |
111 } | 112 } |
112 switch (type) { | 113 switch (type) { |
113 case kStepInfinite: | 114 case kStepInfinite: |
114 step_func_ = &VarianceArray::InfiniteStep; | 115 step_func_ = &VarianceArray::InfiniteStep; |
115 break; | 116 break; |
116 case kStepDecaying: | 117 case kStepDecaying: |
117 step_func_ = &VarianceArray::DecayStep; | 118 step_func_ = &VarianceArray::DecayStep; |
118 break; | 119 break; |
119 case kStepWindowed: | 120 case kStepWindowed: |
120 step_func_ = &VarianceArray::WindowedStep; | 121 step_func_ = &VarianceArray::WindowedStep; |
121 break; | 122 break; |
122 case kStepBlocked: | 123 case kStepBlocked: |
123 step_func_ = &VarianceArray::BlockedStep; | 124 step_func_ = &VarianceArray::BlockedStep; |
124 break; | 125 break; |
126 case kStepBlockBasedMovingAverage: | |
127 step_func_ = &VarianceArray::BlockBasedMovingAverage; | |
128 break; | |
125 } | 129 } |
126 } | 130 } |
127 | 131 |
128 // Compute the variance with Welford's algorithm, adding some fudge to | 132 // Compute the variance with Welford's algorithm, adding some fudge to |
129 // the input in case of all-zeroes. | 133 // the input in case of all-zeroes. |
130 void VarianceArray::InfiniteStep(const complex<float>* data, bool skip_fudge) { | 134 void VarianceArray::InfiniteStep(const complex<float>* data, bool skip_fudge) { |
131 array_mean_ = 0.0f; | 135 array_mean_ = 0.0f; |
132 ++count_; | 136 ++count_; |
133 for (int i = 0; i < freqs_; ++i) { | 137 for (int i = 0; i < freqs_; ++i) { |
134 complex<float> sample = data[i]; | 138 complex<float> sample = data[i]; |
(...skipping 81 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
216 history_cursor_ = (history_cursor_ + 1) % window_size_; | 220 history_cursor_ = (history_cursor_ + 1) % window_size_; |
217 ++count_; | 221 ++count_; |
218 } | 222 } |
219 | 223 |
220 // Variance with a window of blocks. Within each block, the variances are | 224 // Variance with a window of blocks. Within each block, the variances are |
221 // recomputed from scratch at every stp, using |Var(X) = E(X^2) - E^2(X)|. | 225 // recomputed from scratch at every stp, using |Var(X) = E(X^2) - E^2(X)|. |
222 // Once a block is filled with kWindowBlockSize samples, it is added to the | 226 // Once a block is filled with kWindowBlockSize samples, it is added to the |
223 // history window and a new block is started. The variances for the window | 227 // history window and a new block is started. The variances for the window |
224 // are recomputed from scratch at each of these transitions. | 228 // are recomputed from scratch at each of these transitions. |
225 void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) { | 229 void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) { |
226 int blocks = min(window_size_, history_cursor_); | 230 int blocks = min(window_size_, history_cursor_ + 1); |
227 for (int i = 0; i < freqs_; ++i) { | 231 for (int i = 0; i < freqs_; ++i) { |
228 AddToMean(data[i], count_ + 1, &sub_running_mean_[i]); | 232 AddToMean(data[i], count_ + 1, &sub_running_mean_[i]); |
229 AddToMean(data[i] * std::conj(data[i]), count_ + 1, | 233 AddToMean(data[i] * std::conj(data[i]), count_ + 1, |
230 &sub_running_mean_sq_[i]); | 234 &sub_running_mean_sq_[i]); |
231 subhistory_[i][history_cursor_ % window_size_] = sub_running_mean_[i]; | 235 subhistory_[i][history_cursor_ % window_size_] = sub_running_mean_[i]; |
232 subhistory_sq_[i][history_cursor_ % window_size_] = sub_running_mean_sq_[i]; | 236 subhistory_sq_[i][history_cursor_ % window_size_] = sub_running_mean_sq_[i]; |
233 | 237 |
234 variance_[i] = | 238 variance_[i] = |
235 (NewMean(running_mean_sq_[i], sub_running_mean_sq_[i], blocks) - | 239 (NewMean(running_mean_sq_[i], sub_running_mean_sq_[i], blocks) - |
236 NewMean(running_mean_[i], sub_running_mean_[i], blocks) * | 240 NewMean(running_mean_[i], sub_running_mean_[i], blocks) * |
237 std::conj(NewMean(running_mean_[i], sub_running_mean_[i], blocks))) | 241 std::conj(NewMean(running_mean_[i], sub_running_mean_[i], blocks))) |
238 .real(); | 242 .real(); |
239 if (count_ == kWindowBlockSize - 1) { | 243 if (count_ == kWindowBlockSize - 1) { |
240 sub_running_mean_[i] = complex<float>(0.0f, 0.0f); | 244 sub_running_mean_[i] = complex<float>(0.0f, 0.0f); |
241 sub_running_mean_sq_[i] = complex<float>(0.0f, 0.0f); | 245 sub_running_mean_sq_[i] = complex<float>(0.0f, 0.0f); |
242 running_mean_[i] = complex<float>(0.0f, 0.0f); | 246 running_mean_[i] = complex<float>(0.0f, 0.0f); |
243 running_mean_sq_[i] = complex<float>(0.0f, 0.0f); | 247 running_mean_sq_[i] = complex<float>(0.0f, 0.0f); |
244 for (int j = 0; j < min(window_size_, history_cursor_); ++j) { | 248 for (int j = 0; j < min(window_size_, history_cursor_); ++j) { |
245 AddToMean(subhistory_[i][j], j, &running_mean_[i]); | 249 AddToMean(subhistory_[i][j], j + 1, &running_mean_[i]); |
246 AddToMean(subhistory_sq_[i][j], j, &running_mean_sq_[i]); | 250 AddToMean(subhistory_sq_[i][j], j + 1, &running_mean_sq_[i]); |
247 } | 251 } |
248 ++history_cursor_; | 252 ++history_cursor_; |
249 } | 253 } |
250 } | 254 } |
251 ++count_; | 255 ++count_; |
252 if (count_ == kWindowBlockSize) { | 256 if (count_ == kWindowBlockSize) { |
253 count_ = 0; | 257 count_ = 0; |
254 } | 258 } |
255 } | 259 } |
256 | 260 |
261 // Recomputes variances from scratch each window based on previous window. | |
262 void VarianceArray::BlockBasedMovingAverage( | |
turaj
2015/06/26 00:32:58
There is a concern, which is not proven, that keep
ekm
2015/06/26 19:07:09
Interesting. This is just do to floating point err
turaj
2015/06/29 17:33:35
Something like that, but I'm not sure.
| |
263 const std::complex<float>* data, bool /*dummy*/) { | |
264 for (int i = 0; i < freqs_; ++i) { | |
265 sub_running_mean_[i] += data[i]; | |
266 sub_running_mean_sq_[i] += data[i] * std::conj(data[i]); | |
267 } | |
268 ++count_; | |
269 | |
270 // TODO(ekmeyerson) make kWindowBlockSize nonconstant to allow | |
271 // experimentation with different block size,window size pairs. | |
272 if (count_ >= kWindowBlockSize) { | |
273 count_ = 0; | |
274 | |
275 for (int i = 0; i < freqs_; ++i) { | |
276 running_mean_[i] -= subhistory_[i][history_cursor_]; | |
277 running_mean_sq_[i] -= subhistory_sq_[i][history_cursor_]; | |
278 | |
279 float scale = 1.f / kWindowBlockSize; | |
280 subhistory_[i][history_cursor_] = sub_running_mean_[i] * scale; | |
281 subhistory_sq_[i][history_cursor_] = sub_running_mean_sq_[i] * scale; | |
282 | |
283 sub_running_mean_[i] = std::complex<float>(0.0f, 0.0f); | |
284 sub_running_mean_sq_[i] = std::complex<float>(0.0f, 0.0f); | |
285 | |
286 running_mean_[i] += subhistory_[i][history_cursor_]; | |
287 running_mean_sq_[i] += subhistory_sq_[i][history_cursor_]; | |
288 | |
289 scale = 1.f / (buffer_full_ ? window_size_ : history_cursor_ + 1); | |
290 variance_[i] = std::real(running_mean_sq_[i] * scale - running_mean_[i] * | |
291 scale * std::conj(running_mean_[i]) * scale); | |
292 } | |
293 | |
294 ++history_cursor_; | |
295 if (history_cursor_ >= window_size_) { | |
296 buffer_full_ = true; | |
297 history_cursor_ = 0; | |
298 } | |
299 } | |
300 } | |
301 | |
257 void VarianceArray::Clear() { | 302 void VarianceArray::Clear() { |
258 memset(running_mean_.get(), 0, sizeof(*running_mean_.get()) * freqs_); | 303 memset(running_mean_.get(), 0, sizeof(*running_mean_.get()) * freqs_); |
259 memset(running_mean_sq_.get(), 0, sizeof(*running_mean_sq_.get()) * freqs_); | 304 memset(running_mean_sq_.get(), 0, sizeof(*running_mean_sq_.get()) * freqs_); |
260 memset(variance_.get(), 0, sizeof(*variance_.get()) * freqs_); | 305 memset(variance_.get(), 0, sizeof(*variance_.get()) * freqs_); |
261 memset(conj_sum_.get(), 0, sizeof(*conj_sum_.get()) * freqs_); | 306 memset(conj_sum_.get(), 0, sizeof(*conj_sum_.get()) * freqs_); |
262 history_cursor_ = 0; | 307 history_cursor_ = 0; |
263 count_ = 0; | 308 count_ = 0; |
264 array_mean_ = 0.0f; | 309 array_mean_ = 0.0f; |
265 } | 310 } |
266 | 311 |
(...skipping 24 matching lines...) Expand all Loading... | |
291 factor = 1.0f; | 336 factor = 1.0f; |
292 } | 337 } |
293 out_block[i] = factor * in_block[i]; | 338 out_block[i] = factor * in_block[i]; |
294 current_[i] = UpdateFactor(target_[i], current_[i], change_limit_); | 339 current_[i] = UpdateFactor(target_[i], current_[i], change_limit_); |
295 } | 340 } |
296 } | 341 } |
297 | 342 |
298 } // namespace intelligibility | 343 } // namespace intelligibility |
299 | 344 |
300 } // namespace webrtc | 345 } // namespace webrtc |
OLD | NEW |