Index: webrtc/modules/audio_processing/vad/voice_activity_detector_unittest.cc |
diff --git a/webrtc/modules/audio_processing/vad/voice_activity_detector_unittest.cc b/webrtc/modules/audio_processing/vad/voice_activity_detector_unittest.cc |
deleted file mode 100644 |
index 1cc0ad65646502d00325a9573c48b721943db89f..0000000000000000000000000000000000000000 |
--- a/webrtc/modules/audio_processing/vad/voice_activity_detector_unittest.cc |
+++ /dev/null |
@@ -1,168 +0,0 @@ |
-/* |
- * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. |
- * |
- * Use of this source code is governed by a BSD-style license |
- * that can be found in the LICENSE file in the root of the source |
- * tree. An additional intellectual property rights grant can be found |
- * in the file PATENTS. All contributing project authors may |
- * be found in the AUTHORS file in the root of the source tree. |
- */ |
- |
-#include "webrtc/modules/audio_processing/vad/voice_activity_detector.h" |
- |
-#include <algorithm> |
-#include <vector> |
- |
-#include "testing/gtest/include/gtest/gtest.h" |
-#include "webrtc/test/testsupport/fileutils.h" |
- |
-namespace webrtc { |
-namespace { |
- |
-const int kStartTimeSec = 16; |
-const float kMeanSpeechProbability = 0.3f; |
-const float kMaxNoiseProbability = 0.07f; |
-const size_t kNumChunks = 300u; |
-const size_t kNumChunksPerIsacBlock = 3; |
- |
-void GenerateNoise(std::vector<int16_t>* data) { |
- for (size_t i = 0; i < data->size(); ++i) { |
- // std::rand returns between 0 and RAND_MAX, but this will work because it |
- // wraps into some random place. |
- (*data)[i] = std::rand(); |
- } |
-} |
- |
-} // namespace |
- |
-TEST(VoiceActivityDetectorTest, ConstructorSetsDefaultValues) { |
- const float kDefaultVoiceValue = 1.f; |
- |
- VoiceActivityDetector vad; |
- |
- std::vector<double> p = vad.chunkwise_voice_probabilities(); |
- std::vector<double> rms = vad.chunkwise_rms(); |
- |
- EXPECT_EQ(p.size(), 0u); |
- EXPECT_EQ(rms.size(), 0u); |
- |
- EXPECT_FLOAT_EQ(vad.last_voice_probability(), kDefaultVoiceValue); |
-} |
- |
-TEST(VoiceActivityDetectorTest, Speech16kHzHasHighVoiceProbabilities) { |
- const int kSampleRateHz = 16000; |
- const int kLength10Ms = kSampleRateHz / 100; |
- |
- VoiceActivityDetector vad; |
- |
- std::vector<int16_t> data(kLength10Ms); |
- float mean_probability = 0.f; |
- |
- FILE* pcm_file = |
- fopen(test::ResourcePath("audio_processing/transient/audio16kHz", "pcm") |
- .c_str(), |
- "rb"); |
- ASSERT_TRUE(pcm_file != nullptr); |
- // The silences in the file are skipped to get a more robust voice probability |
- // for speech. |
- ASSERT_EQ(fseek(pcm_file, kStartTimeSec * kSampleRateHz * sizeof(data[0]), |
- SEEK_SET), |
- 0); |
- |
- size_t num_chunks = 0; |
- while (fread(&data[0], sizeof(data[0]), data.size(), pcm_file) == |
- data.size()) { |
- vad.ProcessChunk(&data[0], data.size(), kSampleRateHz); |
- |
- mean_probability += vad.last_voice_probability(); |
- |
- ++num_chunks; |
- } |
- |
- mean_probability /= num_chunks; |
- |
- EXPECT_GT(mean_probability, kMeanSpeechProbability); |
-} |
- |
-TEST(VoiceActivityDetectorTest, Speech32kHzHasHighVoiceProbabilities) { |
- const int kSampleRateHz = 32000; |
- const int kLength10Ms = kSampleRateHz / 100; |
- |
- VoiceActivityDetector vad; |
- |
- std::vector<int16_t> data(kLength10Ms); |
- float mean_probability = 0.f; |
- |
- FILE* pcm_file = |
- fopen(test::ResourcePath("audio_processing/transient/audio32kHz", "pcm") |
- .c_str(), |
- "rb"); |
- ASSERT_TRUE(pcm_file != nullptr); |
- // The silences in the file are skipped to get a more robust voice probability |
- // for speech. |
- ASSERT_EQ(fseek(pcm_file, kStartTimeSec * kSampleRateHz * sizeof(data[0]), |
- SEEK_SET), |
- 0); |
- |
- size_t num_chunks = 0; |
- while (fread(&data[0], sizeof(data[0]), data.size(), pcm_file) == |
- data.size()) { |
- vad.ProcessChunk(&data[0], data.size(), kSampleRateHz); |
- |
- mean_probability += vad.last_voice_probability(); |
- |
- ++num_chunks; |
- } |
- |
- mean_probability /= num_chunks; |
- |
- EXPECT_GT(mean_probability, kMeanSpeechProbability); |
-} |
- |
-TEST(VoiceActivityDetectorTest, Noise16kHzHasLowVoiceProbabilities) { |
- VoiceActivityDetector vad; |
- |
- std::vector<int16_t> data(kLength10Ms); |
- float max_probability = 0.f; |
- |
- std::srand(42); |
- |
- for (size_t i = 0; i < kNumChunks; ++i) { |
- GenerateNoise(&data); |
- |
- vad.ProcessChunk(&data[0], data.size(), kSampleRateHz); |
- |
- // Before the |vad has enough data to process an ISAC block it will return |
- // the default value, 1.f, which would ruin the |max_probability| value. |
- if (i > kNumChunksPerIsacBlock) { |
- max_probability = std::max(max_probability, vad.last_voice_probability()); |
- } |
- } |
- |
- EXPECT_LT(max_probability, kMaxNoiseProbability); |
-} |
- |
-TEST(VoiceActivityDetectorTest, Noise32kHzHasLowVoiceProbabilities) { |
- VoiceActivityDetector vad; |
- |
- std::vector<int16_t> data(2 * kLength10Ms); |
- float max_probability = 0.f; |
- |
- std::srand(42); |
- |
- for (size_t i = 0; i < kNumChunks; ++i) { |
- GenerateNoise(&data); |
- |
- vad.ProcessChunk(&data[0], data.size(), 2 * kSampleRateHz); |
- |
- // Before the |vad has enough data to process an ISAC block it will return |
- // the default value, 1.f, which would ruin the |max_probability| value. |
- if (i > kNumChunksPerIsacBlock) { |
- max_probability = std::max(max_probability, vad.last_voice_probability()); |
- } |
- } |
- |
- EXPECT_LT(max_probability, kMaxNoiseProbability); |
-} |
- |
-} // namespace webrtc |