| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright 2016 The WebRTC Project Authors. All rights reserved. | 2 * Copyright 2016 The WebRTC Project Authors. All rights reserved. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
| 5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
| 6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
| 7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
| 8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
| 9 */ | 9 */ |
| 10 | 10 |
| 11 #include "webrtc/rtc_base/task_queue.h" | 11 #include "webrtc/rtc_base/task_queue.h" |
| 12 | 12 |
| 13 #include <mmsystem.h> | 13 #include <mmsystem.h> |
| 14 #include <string.h> | 14 #include <string.h> |
| 15 | 15 |
| 16 #include <algorithm> | 16 #include <algorithm> |
| 17 #include <queue> | 17 #include <queue> |
| 18 | 18 |
| 19 #include "webrtc/rtc_base/arraysize.h" | 19 #include "webrtc/rtc_base/arraysize.h" |
| 20 #include "webrtc/rtc_base/checks.h" | 20 #include "webrtc/rtc_base/checks.h" |
| 21 #include "webrtc/rtc_base/event.h" |
| 21 #include "webrtc/rtc_base/logging.h" | 22 #include "webrtc/rtc_base/logging.h" |
| 23 #include "webrtc/rtc_base/platform_thread.h" |
| 24 #include "webrtc/rtc_base/refcount.h" |
| 25 #include "webrtc/rtc_base/refcountedobject.h" |
| 22 #include "webrtc/rtc_base/safe_conversions.h" | 26 #include "webrtc/rtc_base/safe_conversions.h" |
| 23 #include "webrtc/rtc_base/timeutils.h" | 27 #include "webrtc/rtc_base/timeutils.h" |
| 24 | 28 |
| 25 namespace rtc { | 29 namespace rtc { |
| 26 namespace { | 30 namespace { |
| 27 #define WM_RUN_TASK WM_USER + 1 | 31 #define WM_RUN_TASK WM_USER + 1 |
| 28 #define WM_QUEUE_DELAYED_TASK WM_USER + 2 | 32 #define WM_QUEUE_DELAYED_TASK WM_USER + 2 |
| 29 | 33 |
| 30 using Priority = TaskQueue::Priority; | 34 using Priority = TaskQueue::Priority; |
| 31 | 35 |
| (...skipping 115 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 147 | 151 |
| 148 private: | 152 private: |
| 149 HANDLE event_ = nullptr; | 153 HANDLE event_ = nullptr; |
| 150 MMRESULT timer_id_ = 0; | 154 MMRESULT timer_id_ = 0; |
| 151 | 155 |
| 152 RTC_DISALLOW_COPY_AND_ASSIGN(MultimediaTimer); | 156 RTC_DISALLOW_COPY_AND_ASSIGN(MultimediaTimer); |
| 153 }; | 157 }; |
| 154 | 158 |
| 155 } // namespace | 159 } // namespace |
| 156 | 160 |
| 157 class TaskQueue::ThreadState { | 161 class TaskQueue::Impl : public RefCountInterface { |
| 158 public: | 162 public: |
| 159 explicit ThreadState(HANDLE in_queue) : in_queue_(in_queue) {} | 163 Impl(const char* queue_name, TaskQueue* queue, Priority priority); |
| 160 ~ThreadState() {} | 164 ~Impl() override; |
| 161 | 165 |
| 162 void RunThreadMain(); | 166 static TaskQueue::Impl* Current(); |
| 167 static TaskQueue* CurrentQueue(); |
| 168 |
| 169 // Used for DCHECKing the current queue. |
| 170 bool IsCurrent() const; |
| 171 |
| 172 template <class Closure, |
| 173 typename std::enable_if< |
| 174 std::is_copy_constructible<Closure>::value>::type* = nullptr> |
| 175 void PostTask(const Closure& closure) { |
| 176 PostTask(std::unique_ptr<QueuedTask>(new ClosureTask<Closure>(closure))); |
| 177 } |
| 178 |
| 179 void PostTask(std::unique_ptr<QueuedTask> task); |
| 180 void PostTaskAndReply(std::unique_ptr<QueuedTask> task, |
| 181 std::unique_ptr<QueuedTask> reply, |
| 182 TaskQueue::Impl* reply_queue); |
| 183 |
| 184 void PostDelayedTask(std::unique_ptr<QueuedTask> task, uint32_t milliseconds); |
| 185 |
| 186 void RunPendingTasks(); |
| 163 | 187 |
| 164 private: | 188 private: |
| 165 bool ProcessQueuedMessages(); | 189 static void ThreadMain(void* context); |
| 166 void RunDueTasks(); | |
| 167 void ScheduleNextTimer(); | |
| 168 void CancelTimers(); | |
| 169 | 190 |
| 170 // Since priority_queue<> by defult orders items in terms of | 191 class WorkerThread : public PlatformThread { |
| 171 // largest->smallest, using std::less<>, and we want smallest->largest, | 192 public: |
| 172 // we would like to use std::greater<> here. Alas it's only available in | 193 WorkerThread(ThreadRunFunction func, |
| 173 // C++14 and later, so we roll our own compare template that that relies on | 194 void* obj, |
| 174 // operator<(). | 195 const char* thread_name, |
| 175 template <typename T> | 196 ThreadPriority priority) |
| 176 struct greater { | 197 : PlatformThread(func, obj, thread_name, priority) {} |
| 177 bool operator()(const T& l, const T& r) { return l > r; } | 198 |
| 199 bool QueueAPC(PAPCFUNC apc_function, ULONG_PTR data) { |
| 200 return PlatformThread::QueueAPC(apc_function, data); |
| 201 } |
| 178 }; | 202 }; |
| 179 | 203 |
| 180 MultimediaTimer timer_; | 204 class ThreadState { |
| 181 std::priority_queue<DelayedTaskInfo, | 205 public: |
| 182 std::vector<DelayedTaskInfo>, | 206 explicit ThreadState(HANDLE in_queue) : in_queue_(in_queue) {} |
| 183 greater<DelayedTaskInfo>> | 207 ~ThreadState() {} |
| 184 timer_tasks_; | 208 |
| 185 UINT_PTR timer_id_ = 0; | 209 void RunThreadMain(); |
| 210 |
| 211 private: |
| 212 bool ProcessQueuedMessages(); |
| 213 void RunDueTasks(); |
| 214 void ScheduleNextTimer(); |
| 215 void CancelTimers(); |
| 216 |
| 217 // Since priority_queue<> by defult orders items in terms of |
| 218 // largest->smallest, using std::less<>, and we want smallest->largest, |
| 219 // we would like to use std::greater<> here. Alas it's only available in |
| 220 // C++14 and later, so we roll our own compare template that that relies on |
| 221 // operator<(). |
| 222 template <typename T> |
| 223 struct greater { |
| 224 bool operator()(const T& l, const T& r) { return l > r; } |
| 225 }; |
| 226 |
| 227 MultimediaTimer timer_; |
| 228 std::priority_queue<DelayedTaskInfo, |
| 229 std::vector<DelayedTaskInfo>, |
| 230 greater<DelayedTaskInfo>> |
| 231 timer_tasks_; |
| 232 UINT_PTR timer_id_ = 0; |
| 233 HANDLE in_queue_; |
| 234 }; |
| 235 |
| 236 TaskQueue* const queue_; |
| 237 WorkerThread thread_; |
| 238 rtc::CriticalSection pending_lock_; |
| 239 std::queue<std::unique_ptr<QueuedTask>> pending_ GUARDED_BY(pending_lock_); |
| 186 HANDLE in_queue_; | 240 HANDLE in_queue_; |
| 187 }; | 241 }; |
| 188 | 242 |
| 189 TaskQueue::TaskQueue(const char* queue_name, Priority priority /*= NORMAL*/) | 243 TaskQueue::Impl::Impl(const char* queue_name, |
| 190 : thread_(&TaskQueue::ThreadMain, | 244 TaskQueue* queue, |
| 245 Priority priority) |
| 246 : queue_(queue), |
| 247 thread_(&TaskQueue::Impl::ThreadMain, |
| 191 this, | 248 this, |
| 192 queue_name, | 249 queue_name, |
| 193 TaskQueuePriorityToThreadPriority(priority)), | 250 TaskQueuePriorityToThreadPriority(priority)), |
| 194 in_queue_(::CreateEvent(nullptr, true, false, nullptr)) { | 251 in_queue_(::CreateEvent(nullptr, true, false, nullptr)) { |
| 195 RTC_DCHECK(queue_name); | 252 RTC_DCHECK(queue_name); |
| 196 RTC_DCHECK(in_queue_); | 253 RTC_DCHECK(in_queue_); |
| 197 thread_.Start(); | 254 thread_.Start(); |
| 198 Event event(false, false); | 255 Event event(false, false); |
| 199 ThreadStartupData startup = {&event, this}; | 256 ThreadStartupData startup = {&event, this}; |
| 200 RTC_CHECK(thread_.QueueAPC(&InitializeQueueThread, | 257 RTC_CHECK(thread_.QueueAPC(&InitializeQueueThread, |
| 201 reinterpret_cast<ULONG_PTR>(&startup))); | 258 reinterpret_cast<ULONG_PTR>(&startup))); |
| 202 event.Wait(Event::kForever); | 259 event.Wait(Event::kForever); |
| 203 } | 260 } |
| 204 | 261 |
| 205 TaskQueue::~TaskQueue() { | 262 TaskQueue::Impl::~Impl() { |
| 206 RTC_DCHECK(!IsCurrent()); | 263 RTC_DCHECK(!IsCurrent()); |
| 207 while (!::PostThreadMessage(thread_.GetThreadRef(), WM_QUIT, 0, 0)) { | 264 while (!::PostThreadMessage(thread_.GetThreadRef(), WM_QUIT, 0, 0)) { |
| 208 RTC_CHECK_EQ(ERROR_NOT_ENOUGH_QUOTA, ::GetLastError()); | 265 RTC_CHECK_EQ(ERROR_NOT_ENOUGH_QUOTA, ::GetLastError()); |
| 209 Sleep(1); | 266 Sleep(1); |
| 210 } | 267 } |
| 211 thread_.Stop(); | 268 thread_.Stop(); |
| 212 ::CloseHandle(in_queue_); | 269 ::CloseHandle(in_queue_); |
| 213 } | 270 } |
| 214 | 271 |
| 215 // static | 272 // static |
| 216 TaskQueue* TaskQueue::Current() { | 273 TaskQueue::Impl* TaskQueue::Impl::Current() { |
| 217 return static_cast<TaskQueue*>(::TlsGetValue(GetQueuePtrTls())); | 274 return static_cast<TaskQueue::Impl*>(::TlsGetValue(GetQueuePtrTls())); |
| 218 } | 275 } |
| 219 | 276 |
| 220 bool TaskQueue::IsCurrent() const { | 277 // static |
| 278 TaskQueue* TaskQueue::Impl::CurrentQueue() { |
| 279 TaskQueue::Impl* current = Current(); |
| 280 return current ? current->queue_ : nullptr; |
| 281 } |
| 282 |
| 283 bool TaskQueue::Impl::IsCurrent() const { |
| 221 return IsThreadRefEqual(thread_.GetThreadRef(), CurrentThreadRef()); | 284 return IsThreadRefEqual(thread_.GetThreadRef(), CurrentThreadRef()); |
| 222 } | 285 } |
| 223 | 286 |
| 224 void TaskQueue::PostTask(std::unique_ptr<QueuedTask> task) { | 287 void TaskQueue::Impl::PostTask(std::unique_ptr<QueuedTask> task) { |
| 225 rtc::CritScope lock(&pending_lock_); | 288 rtc::CritScope lock(&pending_lock_); |
| 226 pending_.push(std::move(task)); | 289 pending_.push(std::move(task)); |
| 227 ::SetEvent(in_queue_); | 290 ::SetEvent(in_queue_); |
| 228 } | 291 } |
| 229 | 292 |
| 230 void TaskQueue::PostDelayedTask(std::unique_ptr<QueuedTask> task, | 293 void TaskQueue::Impl::PostDelayedTask(std::unique_ptr<QueuedTask> task, |
| 231 uint32_t milliseconds) { | 294 uint32_t milliseconds) { |
| 232 if (!milliseconds) { | 295 if (!milliseconds) { |
| 233 PostTask(std::move(task)); | 296 PostTask(std::move(task)); |
| 234 return; | 297 return; |
| 235 } | 298 } |
| 236 | 299 |
| 237 // TODO(tommi): Avoid this allocation. It is currently here since | 300 // TODO(tommi): Avoid this allocation. It is currently here since |
| 238 // the timestamp stored in the task info object, is a 64bit timestamp | 301 // the timestamp stored in the task info object, is a 64bit timestamp |
| 239 // and WPARAM is 32bits in 32bit builds. Otherwise, we could pass the | 302 // and WPARAM is 32bits in 32bit builds. Otherwise, we could pass the |
| 240 // task pointer and timestamp as LPARAM and WPARAM. | 303 // task pointer and timestamp as LPARAM and WPARAM. |
| 241 auto* task_info = new DelayedTaskInfo(milliseconds, std::move(task)); | 304 auto* task_info = new DelayedTaskInfo(milliseconds, std::move(task)); |
| 242 if (!::PostThreadMessage(thread_.GetThreadRef(), WM_QUEUE_DELAYED_TASK, 0, | 305 if (!::PostThreadMessage(thread_.GetThreadRef(), WM_QUEUE_DELAYED_TASK, 0, |
| 243 reinterpret_cast<LPARAM>(task_info))) { | 306 reinterpret_cast<LPARAM>(task_info))) { |
| 244 delete task_info; | 307 delete task_info; |
| 245 } | 308 } |
| 246 } | 309 } |
| 247 | 310 |
| 248 void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task, | 311 void TaskQueue::Impl::PostTaskAndReply(std::unique_ptr<QueuedTask> task, |
| 249 std::unique_ptr<QueuedTask> reply, | 312 std::unique_ptr<QueuedTask> reply, |
| 250 TaskQueue* reply_queue) { | 313 TaskQueue::Impl* reply_queue) { |
| 251 QueuedTask* task_ptr = task.release(); | 314 QueuedTask* task_ptr = task.release(); |
| 252 QueuedTask* reply_task_ptr = reply.release(); | 315 QueuedTask* reply_task_ptr = reply.release(); |
| 253 DWORD reply_thread_id = reply_queue->thread_.GetThreadRef(); | 316 DWORD reply_thread_id = reply_queue->thread_.GetThreadRef(); |
| 254 PostTask([task_ptr, reply_task_ptr, reply_thread_id]() { | 317 PostTask([task_ptr, reply_task_ptr, reply_thread_id]() { |
| 255 if (task_ptr->Run()) | 318 if (task_ptr->Run()) |
| 256 delete task_ptr; | 319 delete task_ptr; |
| 257 // If the thread's message queue is full, we can't queue the task and will | 320 // If the thread's message queue is full, we can't queue the task and will |
| 258 // have to drop it (i.e. delete). | 321 // have to drop it (i.e. delete). |
| 259 if (!::PostThreadMessage(reply_thread_id, WM_RUN_TASK, 0, | 322 if (!::PostThreadMessage(reply_thread_id, WM_RUN_TASK, 0, |
| 260 reinterpret_cast<LPARAM>(reply_task_ptr))) { | 323 reinterpret_cast<LPARAM>(reply_task_ptr))) { |
| 261 delete reply_task_ptr; | 324 delete reply_task_ptr; |
| 262 } | 325 } |
| 263 }); | 326 }); |
| 264 } | 327 } |
| 265 | 328 |
| 266 void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task, | 329 void TaskQueue::Impl::RunPendingTasks() { |
| 267 std::unique_ptr<QueuedTask> reply) { | |
| 268 return PostTaskAndReply(std::move(task), std::move(reply), Current()); | |
| 269 } | |
| 270 | |
| 271 void TaskQueue::RunPendingTasks() { | |
| 272 while (true) { | 330 while (true) { |
| 273 std::unique_ptr<QueuedTask> task; | 331 std::unique_ptr<QueuedTask> task; |
| 274 { | 332 { |
| 275 rtc::CritScope lock(&pending_lock_); | 333 rtc::CritScope lock(&pending_lock_); |
| 276 if (pending_.empty()) | 334 if (pending_.empty()) |
| 277 break; | 335 break; |
| 278 task = std::move(pending_.front()); | 336 task = std::move(pending_.front()); |
| 279 pending_.pop(); | 337 pending_.pop(); |
| 280 } | 338 } |
| 281 | 339 |
| 282 if (!task->Run()) | 340 if (!task->Run()) |
| 283 task.release(); | 341 task.release(); |
| 284 } | 342 } |
| 285 } | 343 } |
| 286 | 344 |
| 287 // static | 345 // static |
| 288 void TaskQueue::ThreadMain(void* context) { | 346 void TaskQueue::Impl::ThreadMain(void* context) { |
| 289 ThreadState state(static_cast<TaskQueue*>(context)->in_queue_); | 347 ThreadState state(static_cast<TaskQueue::Impl*>(context)->in_queue_); |
| 290 state.RunThreadMain(); | 348 state.RunThreadMain(); |
| 291 } | 349 } |
| 292 | 350 |
| 293 void TaskQueue::ThreadState::RunThreadMain() { | 351 void TaskQueue::Impl::ThreadState::RunThreadMain() { |
| 294 HANDLE handles[2] = { *timer_.event_for_wait(), in_queue_ }; | 352 HANDLE handles[2] = { *timer_.event_for_wait(), in_queue_ }; |
| 295 while (true) { | 353 while (true) { |
| 296 // Make sure we do an alertable wait as that's required to allow APCs to run | 354 // Make sure we do an alertable wait as that's required to allow APCs to run |
| 297 // (e.g. required for InitializeQueueThread and stopping the thread in | 355 // (e.g. required for InitializeQueueThread and stopping the thread in |
| 298 // PlatformThread). | 356 // PlatformThread). |
| 299 DWORD result = ::MsgWaitForMultipleObjectsEx( | 357 DWORD result = ::MsgWaitForMultipleObjectsEx( |
| 300 arraysize(handles), handles, INFINITE, QS_ALLEVENTS, MWMO_ALERTABLE); | 358 arraysize(handles), handles, INFINITE, QS_ALLEVENTS, MWMO_ALERTABLE); |
| 301 RTC_CHECK_NE(WAIT_FAILED, result); | 359 RTC_CHECK_NE(WAIT_FAILED, result); |
| 302 if (result == (WAIT_OBJECT_0 + 2)) { | 360 if (result == (WAIT_OBJECT_0 + 2)) { |
| 303 // There are messages in the message queue that need to be handled. | 361 // There are messages in the message queue that need to be handled. |
| 304 if (!ProcessQueuedMessages()) | 362 if (!ProcessQueuedMessages()) |
| 305 break; | 363 break; |
| 306 } | 364 } |
| 307 | 365 |
| 308 if (result == WAIT_OBJECT_0 || (!timer_tasks_.empty() && | 366 if (result == WAIT_OBJECT_0 || (!timer_tasks_.empty() && |
| 309 ::WaitForSingleObject(*timer_.event_for_wait(), 0) == WAIT_OBJECT_0)) { | 367 ::WaitForSingleObject(*timer_.event_for_wait(), 0) == WAIT_OBJECT_0)) { |
| 310 // The multimedia timer was signaled. | 368 // The multimedia timer was signaled. |
| 311 timer_.Cancel(); | 369 timer_.Cancel(); |
| 312 RunDueTasks(); | 370 RunDueTasks(); |
| 313 ScheduleNextTimer(); | 371 ScheduleNextTimer(); |
| 314 } | 372 } |
| 315 | 373 |
| 316 if (result == (WAIT_OBJECT_0 + 1)) { | 374 if (result == (WAIT_OBJECT_0 + 1)) { |
| 317 ::ResetEvent(in_queue_); | 375 ::ResetEvent(in_queue_); |
| 318 TaskQueue::Current()->RunPendingTasks(); | 376 TaskQueue::Impl::Current()->RunPendingTasks(); |
| 319 } | 377 } |
| 320 } | 378 } |
| 321 } | 379 } |
| 322 | 380 |
| 323 bool TaskQueue::ThreadState::ProcessQueuedMessages() { | 381 bool TaskQueue::Impl::ThreadState::ProcessQueuedMessages() { |
| 324 MSG msg = {}; | 382 MSG msg = {}; |
| 325 // To protect against overly busy message queues, we limit the time | 383 // To protect against overly busy message queues, we limit the time |
| 326 // we process tasks to a few milliseconds. If we don't do that, there's | 384 // we process tasks to a few milliseconds. If we don't do that, there's |
| 327 // a chance that timer tasks won't ever run. | 385 // a chance that timer tasks won't ever run. |
| 328 static const int kMaxTaskProcessingTimeMs = 500; | 386 static const int kMaxTaskProcessingTimeMs = 500; |
| 329 auto start = GetTick(); | 387 auto start = GetTick(); |
| 330 while (::PeekMessage(&msg, nullptr, 0, 0, PM_REMOVE) && | 388 while (::PeekMessage(&msg, nullptr, 0, 0, PM_REMOVE) && |
| 331 msg.message != WM_QUIT) { | 389 msg.message != WM_QUIT) { |
| 332 if (!msg.hwnd) { | 390 if (!msg.hwnd) { |
| 333 switch (msg.message) { | 391 switch (msg.message) { |
| (...skipping 33 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 367 ::TranslateMessage(&msg); | 425 ::TranslateMessage(&msg); |
| 368 ::DispatchMessage(&msg); | 426 ::DispatchMessage(&msg); |
| 369 } | 427 } |
| 370 | 428 |
| 371 if (GetTick() > start + kMaxTaskProcessingTimeMs) | 429 if (GetTick() > start + kMaxTaskProcessingTimeMs) |
| 372 break; | 430 break; |
| 373 } | 431 } |
| 374 return msg.message != WM_QUIT; | 432 return msg.message != WM_QUIT; |
| 375 } | 433 } |
| 376 | 434 |
| 377 void TaskQueue::ThreadState::RunDueTasks() { | 435 void TaskQueue::Impl::ThreadState::RunDueTasks() { |
| 378 RTC_DCHECK(!timer_tasks_.empty()); | 436 RTC_DCHECK(!timer_tasks_.empty()); |
| 379 auto now = GetTick(); | 437 auto now = GetTick(); |
| 380 do { | 438 do { |
| 381 const auto& top = timer_tasks_.top(); | 439 const auto& top = timer_tasks_.top(); |
| 382 if (top.due_time() > now) | 440 if (top.due_time() > now) |
| 383 break; | 441 break; |
| 384 top.Run(); | 442 top.Run(); |
| 385 timer_tasks_.pop(); | 443 timer_tasks_.pop(); |
| 386 } while (!timer_tasks_.empty()); | 444 } while (!timer_tasks_.empty()); |
| 387 } | 445 } |
| 388 | 446 |
| 389 void TaskQueue::ThreadState::ScheduleNextTimer() { | 447 void TaskQueue::Impl::ThreadState::ScheduleNextTimer() { |
| 390 RTC_DCHECK_EQ(timer_id_, 0); | 448 RTC_DCHECK_EQ(timer_id_, 0); |
| 391 if (timer_tasks_.empty()) | 449 if (timer_tasks_.empty()) |
| 392 return; | 450 return; |
| 393 | 451 |
| 394 const auto& next_task = timer_tasks_.top(); | 452 const auto& next_task = timer_tasks_.top(); |
| 395 int64_t delay_ms = std::max(0ll, next_task.due_time() - GetTick()); | 453 int64_t delay_ms = std::max(0ll, next_task.due_time() - GetTick()); |
| 396 uint32_t milliseconds = rtc::dchecked_cast<uint32_t>(delay_ms); | 454 uint32_t milliseconds = rtc::dchecked_cast<uint32_t>(delay_ms); |
| 397 if (!timer_.StartOneShotTimer(milliseconds)) | 455 if (!timer_.StartOneShotTimer(milliseconds)) |
| 398 timer_id_ = ::SetTimer(nullptr, 0, milliseconds, nullptr); | 456 timer_id_ = ::SetTimer(nullptr, 0, milliseconds, nullptr); |
| 399 } | 457 } |
| 400 | 458 |
| 401 void TaskQueue::ThreadState::CancelTimers() { | 459 void TaskQueue::Impl::ThreadState::CancelTimers() { |
| 402 timer_.Cancel(); | 460 timer_.Cancel(); |
| 403 if (timer_id_) { | 461 if (timer_id_) { |
| 404 ::KillTimer(nullptr, timer_id_); | 462 ::KillTimer(nullptr, timer_id_); |
| 405 timer_id_ = 0; | 463 timer_id_ = 0; |
| 406 } | 464 } |
| 407 } | 465 } |
| 408 | 466 |
| 467 // Boilerplate for the PIMPL pattern. |
| 468 TaskQueue::TaskQueue(const char* queue_name, Priority priority) |
| 469 : impl_(new RefCountedObject<TaskQueue::Impl>(queue_name, this, priority)) { |
| 470 } |
| 471 |
| 472 TaskQueue::~TaskQueue() {} |
| 473 |
| 474 // static |
| 475 TaskQueue* TaskQueue::Current() { |
| 476 return TaskQueue::Impl::CurrentQueue(); |
| 477 } |
| 478 |
| 479 // Used for DCHECKing the current queue. |
| 480 bool TaskQueue::IsCurrent() const { |
| 481 return impl_->IsCurrent(); |
| 482 } |
| 483 |
| 484 void TaskQueue::PostTask(std::unique_ptr<QueuedTask> task) { |
| 485 return TaskQueue::impl_->PostTask(std::move(task)); |
| 486 } |
| 487 |
| 488 void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task, |
| 489 std::unique_ptr<QueuedTask> reply, |
| 490 TaskQueue* reply_queue) { |
| 491 return TaskQueue::impl_->PostTaskAndReply(std::move(task), std::move(reply), |
| 492 reply_queue->impl_.get()); |
| 493 } |
| 494 |
| 495 void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task, |
| 496 std::unique_ptr<QueuedTask> reply) { |
| 497 return TaskQueue::impl_->PostTaskAndReply(std::move(task), std::move(reply), |
| 498 impl_.get()); |
| 499 } |
| 500 |
| 501 void TaskQueue::PostDelayedTask(std::unique_ptr<QueuedTask> task, |
| 502 uint32_t milliseconds) { |
| 503 return TaskQueue::impl_->PostDelayedTask(std::move(task), milliseconds); |
| 504 } |
| 505 |
| 409 } // namespace rtc | 506 } // namespace rtc |
| OLD | NEW |