Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1314)

Unified Diff: webrtc/modules/audio_processing/aec3/suppression_gain.cc

Issue 2886733002: Transparency increasing tuning for AEC3 (Closed)
Patch Set: Fixed memory issue Created 3 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: webrtc/modules/audio_processing/aec3/suppression_gain.cc
diff --git a/webrtc/modules/audio_processing/aec3/suppression_gain.cc b/webrtc/modules/audio_processing/aec3/suppression_gain.cc
index 86af60f316fa867e6f2276c8aac7311fd867fa44..7455d29e165aa07dadceb8427d689042ec2cf1be 100644
--- a/webrtc/modules/audio_processing/aec3/suppression_gain.cc
+++ b/webrtc/modules/audio_processing/aec3/suppression_gain.cc
@@ -25,183 +25,246 @@
namespace webrtc {
namespace {
-void GainPostProcessing(std::array<float, kFftLengthBy2Plus1>* gain_squared) {
+// Adjust the gains according to the presence of known external filters.
+void AdjustForExternalFilters(std::array<float, kFftLengthBy2Plus1>* gain) {
// Limit the low frequency gains to avoid the impact of the high-pass filter
// on the lower-frequency gain influencing the overall achieved gain.
- (*gain_squared)[1] = std::min((*gain_squared)[1], (*gain_squared)[2]);
- (*gain_squared)[0] = (*gain_squared)[1];
+ (*gain)[0] = (*gain)[1] = std::min((*gain)[1], (*gain)[2]);
// Limit the high frequency gains to avoid the impact of the anti-aliasing
// filter on the upper-frequency gains influencing the overall achieved
// gain. TODO(peah): Update this when new anti-aliasing filters are
// implemented.
constexpr size_t kAntiAliasingImpactLimit = (64 * 2000) / 8000;
- std::for_each(gain_squared->begin() + kAntiAliasingImpactLimit,
- gain_squared->end() - 1,
- [gain_squared, kAntiAliasingImpactLimit](float& a) {
- a = std::min(a, (*gain_squared)[kAntiAliasingImpactLimit]);
- });
- (*gain_squared)[kFftLengthBy2] = (*gain_squared)[kFftLengthBy2Minus1];
+ const float min_upper_gain = (*gain)[kAntiAliasingImpactLimit];
+ std::for_each(
+ gain->begin() + kAntiAliasingImpactLimit, gain->end() - 1,
+ [min_upper_gain](float& a) { a = std::min(a, min_upper_gain); });
+ (*gain)[kFftLengthBy2] = (*gain)[kFftLengthBy2Minus1];
}
-constexpr int kNumIterations = 2;
-constexpr float kEchoMaskingMargin = 1.f / 20.f;
-constexpr float kBandMaskingFactor = 1.f / 10.f;
-constexpr float kTimeMaskingFactor = 1.f / 10.f;
+// Computes the gain to apply for the bands beyond the first band.
+float UpperBandsGain(
+ bool saturated_echo,
+ const std::vector<std::vector<float>>& render,
+ const std::array<float, kFftLengthBy2Plus1>& low_band_gain) {
+ RTC_DCHECK_LT(0, render.size());
+ if (render.size() == 1) {
+ return 1.f;
+ }
-// TODO(peah): Add further optimizations, in particular for the divisions.
-void ComputeGains(
- Aec3Optimization optimization,
- const std::array<float, kFftLengthBy2Plus1>& nearend_power,
- const std::array<float, kFftLengthBy2Plus1>& residual_echo_power,
- const std::array<float, kFftLengthBy2Plus1>& comfort_noise_power,
- float strong_nearend_margin,
- std::array<float, kFftLengthBy2Minus1>* previous_gain_squared,
- std::array<float, kFftLengthBy2Minus1>* previous_masker,
+ constexpr size_t kLowBandGainLimit = kFftLengthBy2 / 2;
+ const float gain_below_8_khz = *std::min_element(
+ low_band_gain.begin() + kLowBandGainLimit, low_band_gain.end());
+
+ // Always attenuate the upper bands when there is saturated echo.
+ if (saturated_echo) {
+ return std::min(0.001f, gain_below_8_khz);
+ }
+
+ // Compute the upper and lower band energies.
+ const auto sum_of_squares = [](float a, float b) { return a + b * b; };
+ const float low_band_energy =
+ std::accumulate(render[0].begin(), render[0].end(), 0.f, sum_of_squares);
+ float high_band_energy = 0.f;
+ for (size_t k = 1; k < render.size(); ++k) {
+ const float energy = std::accumulate(render[k].begin(), render[k].end(),
+ 0.f, sum_of_squares);
+ high_band_energy = std::max(high_band_energy, energy);
+ }
+
+ // If there is more power in the lower frequencies than the upper frequencies,
+ // or if the power in upper frequencies is low, do not bound the gain in the
+ // upper bands.
+ float anti_howling_gain;
+ constexpr float kThreshold = kSubBlockSize * 10.f * 10.f;
+ if (high_band_energy < std::max(low_band_energy, kThreshold)) {
+ anti_howling_gain = 1.f;
+ } else {
+ // In all other cases, bound the gain for upper frequencies.
+ RTC_DCHECK_LE(low_band_energy, high_band_energy);
+ RTC_DCHECK_NE(0.f, high_band_energy);
+ anti_howling_gain = 0.01f * sqrtf(low_band_energy / high_band_energy);
+ }
+
+ // Choose the gain as the minimum of the lower and upper gains.
+ return std::min(gain_below_8_khz, anti_howling_gain);
+}
+
+// Limits the gain increase.
+void UpdateMaxGainIncrease(
+ size_t no_saturation_counter,
+ bool low_noise_render,
+ const std::array<float, kFftLengthBy2Plus1>& last_echo,
+ const std::array<float, kFftLengthBy2Plus1>& echo,
+ const std::array<float, kFftLengthBy2Plus1>& last_gain,
+ const std::array<float, kFftLengthBy2Plus1>& new_gain,
+ std::array<float, kFftLengthBy2Plus1>* gain_increase) {
+ float max_increasing;
+ float max_decreasing;
+ float rate_increasing;
+ float rate_decreasing;
+ float min_increasing;
+ float min_decreasing;
+
+ if (low_noise_render) {
+ max_increasing = 8.f;
+ max_decreasing = 8.f;
+ rate_increasing = 2.f;
+ rate_decreasing = 2.f;
+ min_increasing = 4.f;
+ min_decreasing = 4.f;
+ } else if (no_saturation_counter > 10) {
+ max_increasing = 4.f;
+ max_decreasing = 4.f;
+ rate_increasing = 2.f;
+ rate_decreasing = 2.f;
+ min_increasing = 1.2f;
+ min_decreasing = 2.f;
+ } else {
+ max_increasing = 1.2f;
+ max_decreasing = 1.2f;
+ rate_increasing = 1.5f;
+ rate_decreasing = 1.5f;
+ min_increasing = 1.f;
+ min_decreasing = 1.f;
+ }
+
+ for (size_t k = 0; k < new_gain.size(); ++k) {
+ if (echo[k] > last_echo[k]) {
+ (*gain_increase)[k] =
+ new_gain[k] > last_gain[k]
+ ? std::min(max_increasing, (*gain_increase)[k] * rate_increasing)
+ : min_increasing;
+ } else {
+ (*gain_increase)[k] =
+ new_gain[k] > last_gain[k]
+ ? std::min(max_decreasing, (*gain_increase)[k] * rate_decreasing)
+ : min_decreasing;
+ }
+ }
+}
+
+// Computes the gain to reduce the echo to a non audible level.
+void GainToNoAudibleEcho(
+ bool low_noise_render,
+ bool saturated_echo,
+ const std::array<float, kFftLengthBy2Plus1>& nearend,
+ const std::array<float, kFftLengthBy2Plus1>& echo,
+ const std::array<float, kFftLengthBy2Plus1>& masker,
+ const std::array<float, kFftLengthBy2Plus1>& min_gain,
+ const std::array<float, kFftLengthBy2Plus1>& max_gain,
+ const std::array<float, kFftLengthBy2Plus1>& one_by_echo,
std::array<float, kFftLengthBy2Plus1>* gain) {
- std::array<float, kFftLengthBy2Minus1> masker;
- std::array<float, kFftLengthBy2Minus1> same_band_masker;
- std::array<float, kFftLengthBy2Minus1> one_by_residual_echo_power;
- std::array<bool, kFftLengthBy2Minus1> strong_nearend;
- std::array<float, kFftLengthBy2Plus1> neighboring_bands_masker;
- std::array<float, kFftLengthBy2Plus1>* gain_squared = gain;
- aec3::VectorMath math(optimization);
-
- // Precompute 1/residual_echo_power.
- std::transform(residual_echo_power.begin() + 1, residual_echo_power.end() - 1,
- one_by_residual_echo_power.begin(),
- [](float a) { return a > 0.f ? 1.f / a : -1.f; });
-
- // Precompute indicators for bands with strong nearend.
- std::transform(
- residual_echo_power.begin() + 1, residual_echo_power.end() - 1,
- nearend_power.begin() + 1, strong_nearend.begin(),
- [&](float a, float b) { return a <= strong_nearend_margin * b; });
-
- // Precompute masker for the same band.
- std::transform(comfort_noise_power.begin() + 1, comfort_noise_power.end() - 1,
- previous_masker->begin(), same_band_masker.begin(),
- [&](float a, float b) { return a + kTimeMaskingFactor * b; });
-
- for (int k = 0; k < kNumIterations; ++k) {
- if (k == 0) {
- // Add masker from the same band.
- std::copy(same_band_masker.begin(), same_band_masker.end(),
- masker.begin());
+ constexpr float kEchoMaskingMargin = 1.f / 100.f;
+ const float nearend_masking_margin =
+ low_noise_render ? 2.f : (saturated_echo ? 0.001f : 0.01f);
+
+ for (size_t k = 0; k < gain->size(); ++k) {
+ RTC_DCHECK_LE(0.f, nearend_masking_margin * nearend[k]);
+ if (echo[k] <= nearend_masking_margin * nearend[k]) {
+ (*gain)[k] = 1.f;
} else {
- // Add masker for neighboring bands.
- math.Multiply(nearend_power, *gain_squared, neighboring_bands_masker);
- math.Accumulate(comfort_noise_power, neighboring_bands_masker);
- std::transform(
- neighboring_bands_masker.begin(), neighboring_bands_masker.end() - 2,
- neighboring_bands_masker.begin() + 2, masker.begin(),
- [&](float a, float b) { return kBandMaskingFactor * (a + b); });
-
- // Add masker from the same band.
- math.Accumulate(same_band_masker, masker);
+ (*gain)[k] = kEchoMaskingMargin * masker[k] * one_by_echo[k];
}
- // Compute new gain as:
- // G2(t,f) = (comfort_noise_power(t,f) + G2(t-1)*nearend_power(t-1)) *
- // kTimeMaskingFactor
- // * kEchoMaskingMargin / residual_echo_power(t,f).
- // or
- // G2(t,f) = ((comfort_noise_power(t,f) + G2(t-1) *
- // nearend_power(t-1)) * kTimeMaskingFactor +
- // (comfort_noise_power(t, f-1) + comfort_noise_power(t, f+1) +
- // (G2(t,f-1)*nearend_power(t, f-1) +
- // G2(t,f+1)*nearend_power(t, f+1)) *
- // kTimeMaskingFactor) * kBandMaskingFactor)
- // * kEchoMaskingMargin / residual_echo_power(t,f).
- std::transform(
- masker.begin(), masker.end(), one_by_residual_echo_power.begin(),
- gain_squared->begin() + 1, [&](float a, float b) {
- return b >= 0 ? std::min(kEchoMaskingMargin * a * b, 1.f) : 1.f;
- });
-
- // Limit gain for bands with strong nearend.
- std::transform(gain_squared->begin() + 1, gain_squared->end() - 1,
- strong_nearend.begin(), gain_squared->begin() + 1,
- [](float a, bool b) { return b ? 1.f : a; });
-
- // Limit the allowed gain update over time.
- std::transform(gain_squared->begin() + 1, gain_squared->end() - 1,
- previous_gain_squared->begin(), gain_squared->begin() + 1,
- [](float a, float b) {
- return b < 0.001f ? std::min(a, 0.001f)
- : std::min(a, b * 2.f);
- });
-
- // Process the gains to avoid artefacts caused by gain realization in the
- // filterbank and impact of external pre-processing of the signal.
- GainPostProcessing(gain_squared);
+ (*gain)[k] = std::min(std::max((*gain)[k], min_gain[k]), max_gain[k]);
}
+}
- std::copy(gain_squared->begin() + 1, gain_squared->end() - 1,
- previous_gain_squared->begin());
-
- math.Multiply(
- rtc::ArrayView<const float>(&(*gain_squared)[1], previous_masker->size()),
- rtc::ArrayView<const float>(&nearend_power[1], previous_masker->size()),
- *previous_masker);
- math.Accumulate(rtc::ArrayView<const float>(&comfort_noise_power[1],
- previous_masker->size()),
- *previous_masker);
- math.Sqrt(*gain);
+// Computes the signal output power that masks the echo signal.
+void MaskingPower(const std::array<float, kFftLengthBy2Plus1>& nearend,
+ const std::array<float, kFftLengthBy2Plus1>& comfort_noise,
+ const std::array<float, kFftLengthBy2Plus1>& last_masker,
+ const std::array<float, kFftLengthBy2Plus1>& gain,
+ std::array<float, kFftLengthBy2Plus1>* masker) {
+ std::array<float, kFftLengthBy2Plus1> side_band_masker;
+ for (size_t k = 0; k < gain.size(); ++k) {
+ side_band_masker[k] = nearend[k] * gain[k] + comfort_noise[k];
+ (*masker)[k] = comfort_noise[k] + 0.1f * last_masker[k];
+ }
+ for (size_t k = 1; k < gain.size() - 1; ++k) {
+ (*masker)[k] += 0.1f * (side_band_masker[k - 1] + side_band_masker[k + 1]);
+ }
}
} // namespace
-// Computes an upper bound on the gain to apply for high frequencies.
-float HighFrequencyGainBound(bool saturated_echo,
- const std::vector<std::vector<float>>& render) {
- if (render.size() == 1) {
- return 1.f;
+// TODO(peah): Add further optimizations, in particular for the divisions.
+void SuppressionGain::LowerBandGain(
+ bool low_noise_render,
+ bool saturated_echo,
+ const std::array<float, kFftLengthBy2Plus1>& nearend,
+ const std::array<float, kFftLengthBy2Plus1>& echo,
+ const std::array<float, kFftLengthBy2Plus1>& comfort_noise,
+ std::array<float, kFftLengthBy2Plus1>* gain) {
+ // Count the number of blocks since saturation.
+ no_saturation_counter_ = saturated_echo ? 0 : no_saturation_counter_ + 1;
+
+ // Precompute 1/echo (note that when the echo is zero, the precomputed value
+ // is never used).
+ std::array<float, kFftLengthBy2Plus1> one_by_echo;
+ std::transform(echo.begin(), echo.end(), one_by_echo.begin(),
+ [](float a) { return a > 0.f ? 1.f / a : 1.f; });
+
+ // Compute the minimum gain as the attenuating gain to put the signal just
+ // above the zero sample values.
+ std::array<float, kFftLengthBy2Plus1> min_gain;
+ const float min_echo_power = low_noise_render ? 192.f : 64.f;
+ if (no_saturation_counter_ > 10) {
+ for (size_t k = 0; k < nearend.size(); ++k) {
+ const float denom = std::min(nearend[k], echo[k]);
+ min_gain[k] = denom > 0.f ? min_echo_power / denom : 1.f;
+ min_gain[k] = std::min(min_gain[k], 1.f);
+ }
+ } else {
+ min_gain.fill(0.f);
}
- // Always attenuate the upper bands when there is saturated echo.
- if (saturated_echo) {
- return 0.001f;
+ // Compute the maximum gain by limiting the gain increase from the previous
+ // gain.
+ std::array<float, kFftLengthBy2Plus1> max_gain;
+ for (size_t k = 0; k < gain->size(); ++k) {
+ max_gain[k] =
+ std::min(std::max(last_gain_[k] * gain_increase_[k], 0.001f), 1.f);
}
- // Compute the upper and lower band energies.
- float low_band_energy =
- std::accumulate(render[0].begin(), render[0].end(), 0.f,
- [](float a, float b) -> float { return a + b * b; });
- float high_band_energies = 0.f;
- for (size_t k = 1; k < render.size(); ++k) {
- high_band_energies = std::max(
- high_band_energies,
- std::accumulate(render[k].begin(), render[k].end(), 0.f,
- [](float a, float b) -> float { return a + b * b; }));
+ // Iteratively compute the gain required to attenuate the echo to a non
+ // noticeable level.
+ gain->fill(0.f);
+ for (int k = 0; k < 2; ++k) {
+ std::array<float, kFftLengthBy2Plus1> masker;
+ MaskingPower(nearend, comfort_noise, last_masker_, *gain, &masker);
+ GainToNoAudibleEcho(low_noise_render, saturated_echo, nearend, echo, masker,
+ min_gain, max_gain, one_by_echo, gain);
+ AdjustForExternalFilters(gain);
}
- // If there is more power in the lower frequencies than the upper frequencies,
- // or if the power in upper frequencies is low, do not bound the gain in the
- // upper bands.
- if (high_band_energies < low_band_energy ||
- high_band_energies < kSubBlockSize * 10.f * 10.f) {
- return 1.f;
- }
+ // Update the allowed maximum gain increase.
+ UpdateMaxGainIncrease(no_saturation_counter_, low_noise_render, last_echo_,
+ echo, last_gain_, *gain, &gain_increase_);
- // In all other cases, bound the gain for upper frequencies.
- RTC_DCHECK_LE(low_band_energy, high_band_energies);
- return 0.01f * sqrtf(low_band_energy / high_band_energies);
+ // Store data required for the gain computation of the next block.
+ std::copy(echo.begin(), echo.end(), last_echo_.begin());
+ std::copy(gain->begin(), gain->end(), last_gain_.begin());
+ MaskingPower(nearend, comfort_noise, last_masker_, *gain, &last_masker_);
+ aec3::VectorMath(optimization_).Sqrt(*gain);
}
SuppressionGain::SuppressionGain(Aec3Optimization optimization)
: optimization_(optimization) {
- previous_gain_squared_.fill(1.f);
- previous_masker_.fill(0.f);
+ last_gain_.fill(1.f);
+ last_masker_.fill(0.f);
+ gain_increase_.fill(1.f);
+ last_echo_.fill(0.f);
}
void SuppressionGain::GetGain(
- const std::array<float, kFftLengthBy2Plus1>& nearend_power,
- const std::array<float, kFftLengthBy2Plus1>& residual_echo_power,
- const std::array<float, kFftLengthBy2Plus1>& comfort_noise_power,
+ const std::array<float, kFftLengthBy2Plus1>& nearend,
+ const std::array<float, kFftLengthBy2Plus1>& echo,
+ const std::array<float, kFftLengthBy2Plus1>& comfort_noise,
bool saturated_echo,
const std::vector<std::vector<float>>& render,
- size_t num_capture_bands,
bool force_zero_gain,
float* high_bands_gain,
std::array<float, kFftLengthBy2Plus1>* low_band_gain) {
@@ -209,32 +272,41 @@ void SuppressionGain::GetGain(
RTC_DCHECK(low_band_gain);
if (force_zero_gain) {
- previous_gain_squared_.fill(0.f);
- std::copy(comfort_noise_power.begin() + 1, comfort_noise_power.end() - 1,
- previous_masker_.begin());
+ last_gain_.fill(0.f);
+ std::copy(comfort_noise.begin(), comfort_noise.end(), last_masker_.begin());
low_band_gain->fill(0.f);
+ gain_increase_.fill(1.f);
*high_bands_gain = 0.f;
return;
}
- // Choose margin to use.
- const float margin = saturated_echo ? 0.001f : 0.01f;
- ComputeGains(optimization_, nearend_power, residual_echo_power,
- comfort_noise_power, margin, &previous_gain_squared_,
- &previous_masker_, low_band_gain);
+ bool low_noise_render = low_render_detector_.Detect(render);
- if (num_capture_bands > 1) {
- // Compute the gain for upper frequencies.
- const float min_high_band_gain =
- HighFrequencyGainBound(saturated_echo, render);
- *high_bands_gain =
- *std::min_element(low_band_gain->begin() + 32, low_band_gain->end());
+ // Compute gain for the lower band.
+ LowerBandGain(low_noise_render, saturated_echo, nearend, echo, comfort_noise,
+ low_band_gain);
- *high_bands_gain = std::min(*high_bands_gain, min_high_band_gain);
+ // Compute the gain for the upper bands.
+ *high_bands_gain = UpperBandsGain(saturated_echo, render, *low_band_gain);
+}
- } else {
- *high_bands_gain = 1.f;
+// Detects when the render signal can be considered to have low power and
+// consist of stationary noise.
+bool SuppressionGain::LowNoiseRenderDetector::Detect(
+ const std::vector<std::vector<float>>& render) {
+ float x2_sum = 0.f;
+ float x2_max = 0.f;
+ for (auto x_k : render[0]) {
+ const float x2 = x_k * x_k;
+ x2_sum += x2;
+ x2_max = std::max(x2_max, x2);
}
+
+ constexpr float kThreshold = 50.f * 50.f * 64.f;
+ const bool low_noise_render =
+ average_power_ < kThreshold && x2_max < 3 * average_power_;
+ average_power_ = average_power_ * 0.9f + x2_sum * 0.1f;
+ return low_noise_render;
}
} // namespace webrtc

Powered by Google App Engine
This is Rietveld 408576698