| Index: webrtc/base/random_unittest.cc
|
| diff --git a/webrtc/base/random_unittest.cc b/webrtc/base/random_unittest.cc
|
| deleted file mode 100644
|
| index 704e81fb2f5184f8a096eaa16c5d23ac6385ef01..0000000000000000000000000000000000000000
|
| --- a/webrtc/base/random_unittest.cc
|
| +++ /dev/null
|
| @@ -1,309 +0,0 @@
|
| -/*
|
| - * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
|
| - *
|
| - * Use of this source code is governed by a BSD-style license
|
| - * that can be found in the LICENSE file in the root of the source
|
| - * tree. An additional intellectual property rights grant can be found
|
| - * in the file PATENTS. All contributing project authors may
|
| - * be found in the AUTHORS file in the root of the source tree.
|
| - */
|
| -
|
| -#include <math.h>
|
| -
|
| -#include <limits>
|
| -#include <vector>
|
| -
|
| -#include "webrtc/base/mathutils.h" // unsigned difference
|
| -#include "webrtc/base/random.h"
|
| -#include "webrtc/test/gtest.h"
|
| -
|
| -namespace webrtc {
|
| -
|
| -namespace {
|
| -// Computes the positive remainder of x/n.
|
| -template <typename T>
|
| -T fdiv_remainder(T x, T n) {
|
| - RTC_CHECK_GE(n, 0);
|
| - T remainder = x % n;
|
| - if (remainder < 0)
|
| - remainder += n;
|
| - return remainder;
|
| -}
|
| -} // namespace
|
| -
|
| -// Sample a number of random integers of type T. Divide them into buckets
|
| -// based on the remainder when dividing by bucket_count and check that each
|
| -// bucket gets roughly the expected number of elements.
|
| -template <typename T>
|
| -void UniformBucketTest(T bucket_count, int samples, Random* prng) {
|
| - std::vector<int> buckets(bucket_count, 0);
|
| -
|
| - uint64_t total_values = 1ull << (std::numeric_limits<T>::digits +
|
| - std::numeric_limits<T>::is_signed);
|
| - T upper_limit =
|
| - std::numeric_limits<T>::max() -
|
| - static_cast<T>(total_values % static_cast<uint64_t>(bucket_count));
|
| - ASSERT_GT(upper_limit, std::numeric_limits<T>::max() / 2);
|
| -
|
| - for (int i = 0; i < samples; i++) {
|
| - T sample;
|
| - do {
|
| - // We exclude a few numbers from the range so that it is divisible by
|
| - // the number of buckets. If we are unlucky and hit one of the excluded
|
| - // numbers we just resample. Note that if the number of buckets is a
|
| - // power of 2, then we don't have to exclude anything.
|
| - sample = prng->Rand<T>();
|
| - } while (sample > upper_limit);
|
| - buckets[fdiv_remainder(sample, bucket_count)]++;
|
| - }
|
| -
|
| - for (T i = 0; i < bucket_count; i++) {
|
| - // Expect the result to be within 3 standard deviations of the mean.
|
| - EXPECT_NEAR(buckets[i], samples / bucket_count,
|
| - 3 * sqrt(samples / bucket_count));
|
| - }
|
| -}
|
| -
|
| -TEST(RandomNumberGeneratorTest, BucketTestSignedChar) {
|
| - Random prng(7297352569824ull);
|
| - UniformBucketTest<signed char>(64, 640000, &prng);
|
| - UniformBucketTest<signed char>(11, 440000, &prng);
|
| - UniformBucketTest<signed char>(3, 270000, &prng);
|
| -}
|
| -
|
| -TEST(RandomNumberGeneratorTest, BucketTestUnsignedChar) {
|
| - Random prng(7297352569824ull);
|
| - UniformBucketTest<unsigned char>(64, 640000, &prng);
|
| - UniformBucketTest<unsigned char>(11, 440000, &prng);
|
| - UniformBucketTest<unsigned char>(3, 270000, &prng);
|
| -}
|
| -
|
| -TEST(RandomNumberGeneratorTest, BucketTestSignedShort) {
|
| - Random prng(7297352569824ull);
|
| - UniformBucketTest<int16_t>(64, 640000, &prng);
|
| - UniformBucketTest<int16_t>(11, 440000, &prng);
|
| - UniformBucketTest<int16_t>(3, 270000, &prng);
|
| -}
|
| -
|
| -TEST(RandomNumberGeneratorTest, BucketTestUnsignedShort) {
|
| - Random prng(7297352569824ull);
|
| - UniformBucketTest<uint16_t>(64, 640000, &prng);
|
| - UniformBucketTest<uint16_t>(11, 440000, &prng);
|
| - UniformBucketTest<uint16_t>(3, 270000, &prng);
|
| -}
|
| -
|
| -TEST(RandomNumberGeneratorTest, BucketTestSignedInt) {
|
| - Random prng(7297352569824ull);
|
| - UniformBucketTest<signed int>(64, 640000, &prng);
|
| - UniformBucketTest<signed int>(11, 440000, &prng);
|
| - UniformBucketTest<signed int>(3, 270000, &prng);
|
| -}
|
| -
|
| -TEST(RandomNumberGeneratorTest, BucketTestUnsignedInt) {
|
| - Random prng(7297352569824ull);
|
| - UniformBucketTest<unsigned int>(64, 640000, &prng);
|
| - UniformBucketTest<unsigned int>(11, 440000, &prng);
|
| - UniformBucketTest<unsigned int>(3, 270000, &prng);
|
| -}
|
| -
|
| -// The range of the random numbers is divided into bucket_count intervals
|
| -// of consecutive numbers. Check that approximately equally many numbers
|
| -// from each inteval are generated.
|
| -void BucketTestSignedInterval(unsigned int bucket_count,
|
| - unsigned int samples,
|
| - int32_t low,
|
| - int32_t high,
|
| - int sigma_level,
|
| - Random* prng) {
|
| - std::vector<unsigned int> buckets(bucket_count, 0);
|
| -
|
| - ASSERT_GE(high, low);
|
| - ASSERT_GE(bucket_count, 2u);
|
| - uint32_t interval = unsigned_difference<int32_t>(high, low) + 1;
|
| - uint32_t numbers_per_bucket;
|
| - if (interval == 0) {
|
| - // The computation high - low + 1 should be 2^32 but overflowed
|
| - // Hence, bucket_count must be a power of 2
|
| - ASSERT_EQ(bucket_count & (bucket_count - 1), 0u);
|
| - numbers_per_bucket = (0x80000000u / bucket_count) * 2;
|
| - } else {
|
| - ASSERT_EQ(interval % bucket_count, 0u);
|
| - numbers_per_bucket = interval / bucket_count;
|
| - }
|
| -
|
| - for (unsigned int i = 0; i < samples; i++) {
|
| - int32_t sample = prng->Rand(low, high);
|
| - EXPECT_LE(low, sample);
|
| - EXPECT_GE(high, sample);
|
| - buckets[unsigned_difference<int32_t>(sample, low) / numbers_per_bucket]++;
|
| - }
|
| -
|
| - for (unsigned int i = 0; i < bucket_count; i++) {
|
| - // Expect the result to be within 3 standard deviations of the mean,
|
| - // or more generally, within sigma_level standard deviations of the mean.
|
| - double mean = static_cast<double>(samples) / bucket_count;
|
| - EXPECT_NEAR(buckets[i], mean, sigma_level * sqrt(mean));
|
| - }
|
| -}
|
| -
|
| -// The range of the random numbers is divided into bucket_count intervals
|
| -// of consecutive numbers. Check that approximately equally many numbers
|
| -// from each inteval are generated.
|
| -void BucketTestUnsignedInterval(unsigned int bucket_count,
|
| - unsigned int samples,
|
| - uint32_t low,
|
| - uint32_t high,
|
| - int sigma_level,
|
| - Random* prng) {
|
| - std::vector<unsigned int> buckets(bucket_count, 0);
|
| -
|
| - ASSERT_GE(high, low);
|
| - ASSERT_GE(bucket_count, 2u);
|
| - uint32_t interval = high - low + 1;
|
| - uint32_t numbers_per_bucket;
|
| - if (interval == 0) {
|
| - // The computation high - low + 1 should be 2^32 but overflowed
|
| - // Hence, bucket_count must be a power of 2
|
| - ASSERT_EQ(bucket_count & (bucket_count - 1), 0u);
|
| - numbers_per_bucket = (0x80000000u / bucket_count) * 2;
|
| - } else {
|
| - ASSERT_EQ(interval % bucket_count, 0u);
|
| - numbers_per_bucket = interval / bucket_count;
|
| - }
|
| -
|
| - for (unsigned int i = 0; i < samples; i++) {
|
| - uint32_t sample = prng->Rand(low, high);
|
| - EXPECT_LE(low, sample);
|
| - EXPECT_GE(high, sample);
|
| - buckets[(sample - low) / numbers_per_bucket]++;
|
| - }
|
| -
|
| - for (unsigned int i = 0; i < bucket_count; i++) {
|
| - // Expect the result to be within 3 standard deviations of the mean,
|
| - // or more generally, within sigma_level standard deviations of the mean.
|
| - double mean = static_cast<double>(samples) / bucket_count;
|
| - EXPECT_NEAR(buckets[i], mean, sigma_level * sqrt(mean));
|
| - }
|
| -}
|
| -
|
| -TEST(RandomNumberGeneratorTest, UniformUnsignedInterval) {
|
| - Random prng(299792458ull);
|
| - BucketTestUnsignedInterval(2, 100000, 0, 1, 3, &prng);
|
| - BucketTestUnsignedInterval(7, 100000, 1, 14, 3, &prng);
|
| - BucketTestUnsignedInterval(11, 100000, 1000, 1010, 3, &prng);
|
| - BucketTestUnsignedInterval(100, 100000, 0, 99, 3, &prng);
|
| - BucketTestUnsignedInterval(2, 100000, 0, 4294967295, 3, &prng);
|
| - BucketTestUnsignedInterval(17, 100000, 455, 2147484110, 3, &prng);
|
| - // 99.7% of all samples will be within 3 standard deviations of the mean,
|
| - // but since we test 1000 buckets we allow an interval of 4 sigma.
|
| - BucketTestUnsignedInterval(1000, 1000000, 0, 2147483999, 4, &prng);
|
| -}
|
| -
|
| -// Disabled for UBSan: https://bugs.chromium.org/p/webrtc/issues/detail?id=5491
|
| -#ifdef UNDEFINED_SANITIZER
|
| -#define MAYBE_UniformSignedInterval DISABLED_UniformSignedInterval
|
| -#else
|
| -#define MAYBE_UniformSignedInterval UniformSignedInterval
|
| -#endif
|
| -TEST(RandomNumberGeneratorTest, MAYBE_UniformSignedInterval) {
|
| - Random prng(66260695729ull);
|
| - BucketTestSignedInterval(2, 100000, 0, 1, 3, &prng);
|
| - BucketTestSignedInterval(7, 100000, -2, 4, 3, &prng);
|
| - BucketTestSignedInterval(11, 100000, 1000, 1010, 3, &prng);
|
| - BucketTestSignedInterval(100, 100000, 0, 99, 3, &prng);
|
| - BucketTestSignedInterval(2, 100000, std::numeric_limits<int32_t>::min(),
|
| - std::numeric_limits<int32_t>::max(), 3, &prng);
|
| - BucketTestSignedInterval(17, 100000, -1073741826, 1073741829, 3, &prng);
|
| - // 99.7% of all samples will be within 3 standard deviations of the mean,
|
| - // but since we test 1000 buckets we allow an interval of 4 sigma.
|
| - BucketTestSignedInterval(1000, 1000000, -352, 2147483647, 4, &prng);
|
| -}
|
| -
|
| -// The range of the random numbers is divided into bucket_count intervals
|
| -// of consecutive numbers. Check that approximately equally many numbers
|
| -// from each inteval are generated.
|
| -void BucketTestFloat(unsigned int bucket_count,
|
| - unsigned int samples,
|
| - int sigma_level,
|
| - Random* prng) {
|
| - ASSERT_GE(bucket_count, 2u);
|
| - std::vector<unsigned int> buckets(bucket_count, 0);
|
| -
|
| - for (unsigned int i = 0; i < samples; i++) {
|
| - uint32_t sample = bucket_count * prng->Rand<float>();
|
| - EXPECT_LE(0u, sample);
|
| - EXPECT_GE(bucket_count - 1, sample);
|
| - buckets[sample]++;
|
| - }
|
| -
|
| - for (unsigned int i = 0; i < bucket_count; i++) {
|
| - // Expect the result to be within 3 standard deviations of the mean,
|
| - // or more generally, within sigma_level standard deviations of the mean.
|
| - double mean = static_cast<double>(samples) / bucket_count;
|
| - EXPECT_NEAR(buckets[i], mean, sigma_level * sqrt(mean));
|
| - }
|
| -}
|
| -
|
| -TEST(RandomNumberGeneratorTest, UniformFloatInterval) {
|
| - Random prng(1380648813ull);
|
| - BucketTestFloat(100, 100000, 3, &prng);
|
| - // 99.7% of all samples will be within 3 standard deviations of the mean,
|
| - // but since we test 1000 buckets we allow an interval of 4 sigma.
|
| - // BucketTestSignedInterval(1000, 1000000, -352, 2147483647, 4, &prng);
|
| -}
|
| -
|
| -TEST(RandomNumberGeneratorTest, SignedHasSameBitPattern) {
|
| - Random prng_signed(66738480ull), prng_unsigned(66738480ull);
|
| -
|
| - for (int i = 0; i < 1000; i++) {
|
| - signed int s = prng_signed.Rand<signed int>();
|
| - unsigned int u = prng_unsigned.Rand<unsigned int>();
|
| - EXPECT_EQ(u, static_cast<unsigned int>(s));
|
| - }
|
| -
|
| - for (int i = 0; i < 1000; i++) {
|
| - int16_t s = prng_signed.Rand<int16_t>();
|
| - uint16_t u = prng_unsigned.Rand<uint16_t>();
|
| - EXPECT_EQ(u, static_cast<uint16_t>(s));
|
| - }
|
| -
|
| - for (int i = 0; i < 1000; i++) {
|
| - signed char s = prng_signed.Rand<signed char>();
|
| - unsigned char u = prng_unsigned.Rand<unsigned char>();
|
| - EXPECT_EQ(u, static_cast<unsigned char>(s));
|
| - }
|
| -}
|
| -
|
| -TEST(RandomNumberGeneratorTest, Gaussian) {
|
| - const int kN = 100000;
|
| - const int kBuckets = 100;
|
| - const double kMean = 49;
|
| - const double kStddev = 10;
|
| -
|
| - Random prng(1256637061);
|
| -
|
| - std::vector<unsigned int> buckets(kBuckets, 0);
|
| - for (int i = 0; i < kN; i++) {
|
| - int index = prng.Gaussian(kMean, kStddev) + 0.5;
|
| - if (index >= 0 && index < kBuckets) {
|
| - buckets[index]++;
|
| - }
|
| - }
|
| -
|
| - const double kPi = 3.14159265358979323846;
|
| - const double kScale = 1 / (kStddev * sqrt(2.0 * kPi));
|
| - const double kDiv = -2.0 * kStddev * kStddev;
|
| - for (int n = 0; n < kBuckets; ++n) {
|
| - // Use Simpsons rule to estimate the probability that a random gaussian
|
| - // sample is in the interval [n-0.5, n+0.5].
|
| - double f_left = kScale * exp((n - kMean - 0.5) * (n - kMean - 0.5) / kDiv);
|
| - double f_mid = kScale * exp((n - kMean) * (n - kMean) / kDiv);
|
| - double f_right = kScale * exp((n - kMean + 0.5) * (n - kMean + 0.5) / kDiv);
|
| - double normal_dist = (f_left + 4 * f_mid + f_right) / 6;
|
| - // Expect the number of samples to be within 3 standard deviations
|
| - // (rounded up) of the expected number of samples in the bucket.
|
| - EXPECT_NEAR(buckets[n], kN * normal_dist, 3 * sqrt(kN * normal_dist) + 1);
|
| - }
|
| -}
|
| -
|
| -} // namespace webrtc
|
|
|