Index: webrtc/base/random_unittest.cc |
diff --git a/webrtc/base/random_unittest.cc b/webrtc/base/random_unittest.cc |
deleted file mode 100644 |
index 704e81fb2f5184f8a096eaa16c5d23ac6385ef01..0000000000000000000000000000000000000000 |
--- a/webrtc/base/random_unittest.cc |
+++ /dev/null |
@@ -1,309 +0,0 @@ |
-/* |
- * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. |
- * |
- * Use of this source code is governed by a BSD-style license |
- * that can be found in the LICENSE file in the root of the source |
- * tree. An additional intellectual property rights grant can be found |
- * in the file PATENTS. All contributing project authors may |
- * be found in the AUTHORS file in the root of the source tree. |
- */ |
- |
-#include <math.h> |
- |
-#include <limits> |
-#include <vector> |
- |
-#include "webrtc/base/mathutils.h" // unsigned difference |
-#include "webrtc/base/random.h" |
-#include "webrtc/test/gtest.h" |
- |
-namespace webrtc { |
- |
-namespace { |
-// Computes the positive remainder of x/n. |
-template <typename T> |
-T fdiv_remainder(T x, T n) { |
- RTC_CHECK_GE(n, 0); |
- T remainder = x % n; |
- if (remainder < 0) |
- remainder += n; |
- return remainder; |
-} |
-} // namespace |
- |
-// Sample a number of random integers of type T. Divide them into buckets |
-// based on the remainder when dividing by bucket_count and check that each |
-// bucket gets roughly the expected number of elements. |
-template <typename T> |
-void UniformBucketTest(T bucket_count, int samples, Random* prng) { |
- std::vector<int> buckets(bucket_count, 0); |
- |
- uint64_t total_values = 1ull << (std::numeric_limits<T>::digits + |
- std::numeric_limits<T>::is_signed); |
- T upper_limit = |
- std::numeric_limits<T>::max() - |
- static_cast<T>(total_values % static_cast<uint64_t>(bucket_count)); |
- ASSERT_GT(upper_limit, std::numeric_limits<T>::max() / 2); |
- |
- for (int i = 0; i < samples; i++) { |
- T sample; |
- do { |
- // We exclude a few numbers from the range so that it is divisible by |
- // the number of buckets. If we are unlucky and hit one of the excluded |
- // numbers we just resample. Note that if the number of buckets is a |
- // power of 2, then we don't have to exclude anything. |
- sample = prng->Rand<T>(); |
- } while (sample > upper_limit); |
- buckets[fdiv_remainder(sample, bucket_count)]++; |
- } |
- |
- for (T i = 0; i < bucket_count; i++) { |
- // Expect the result to be within 3 standard deviations of the mean. |
- EXPECT_NEAR(buckets[i], samples / bucket_count, |
- 3 * sqrt(samples / bucket_count)); |
- } |
-} |
- |
-TEST(RandomNumberGeneratorTest, BucketTestSignedChar) { |
- Random prng(7297352569824ull); |
- UniformBucketTest<signed char>(64, 640000, &prng); |
- UniformBucketTest<signed char>(11, 440000, &prng); |
- UniformBucketTest<signed char>(3, 270000, &prng); |
-} |
- |
-TEST(RandomNumberGeneratorTest, BucketTestUnsignedChar) { |
- Random prng(7297352569824ull); |
- UniformBucketTest<unsigned char>(64, 640000, &prng); |
- UniformBucketTest<unsigned char>(11, 440000, &prng); |
- UniformBucketTest<unsigned char>(3, 270000, &prng); |
-} |
- |
-TEST(RandomNumberGeneratorTest, BucketTestSignedShort) { |
- Random prng(7297352569824ull); |
- UniformBucketTest<int16_t>(64, 640000, &prng); |
- UniformBucketTest<int16_t>(11, 440000, &prng); |
- UniformBucketTest<int16_t>(3, 270000, &prng); |
-} |
- |
-TEST(RandomNumberGeneratorTest, BucketTestUnsignedShort) { |
- Random prng(7297352569824ull); |
- UniformBucketTest<uint16_t>(64, 640000, &prng); |
- UniformBucketTest<uint16_t>(11, 440000, &prng); |
- UniformBucketTest<uint16_t>(3, 270000, &prng); |
-} |
- |
-TEST(RandomNumberGeneratorTest, BucketTestSignedInt) { |
- Random prng(7297352569824ull); |
- UniformBucketTest<signed int>(64, 640000, &prng); |
- UniformBucketTest<signed int>(11, 440000, &prng); |
- UniformBucketTest<signed int>(3, 270000, &prng); |
-} |
- |
-TEST(RandomNumberGeneratorTest, BucketTestUnsignedInt) { |
- Random prng(7297352569824ull); |
- UniformBucketTest<unsigned int>(64, 640000, &prng); |
- UniformBucketTest<unsigned int>(11, 440000, &prng); |
- UniformBucketTest<unsigned int>(3, 270000, &prng); |
-} |
- |
-// The range of the random numbers is divided into bucket_count intervals |
-// of consecutive numbers. Check that approximately equally many numbers |
-// from each inteval are generated. |
-void BucketTestSignedInterval(unsigned int bucket_count, |
- unsigned int samples, |
- int32_t low, |
- int32_t high, |
- int sigma_level, |
- Random* prng) { |
- std::vector<unsigned int> buckets(bucket_count, 0); |
- |
- ASSERT_GE(high, low); |
- ASSERT_GE(bucket_count, 2u); |
- uint32_t interval = unsigned_difference<int32_t>(high, low) + 1; |
- uint32_t numbers_per_bucket; |
- if (interval == 0) { |
- // The computation high - low + 1 should be 2^32 but overflowed |
- // Hence, bucket_count must be a power of 2 |
- ASSERT_EQ(bucket_count & (bucket_count - 1), 0u); |
- numbers_per_bucket = (0x80000000u / bucket_count) * 2; |
- } else { |
- ASSERT_EQ(interval % bucket_count, 0u); |
- numbers_per_bucket = interval / bucket_count; |
- } |
- |
- for (unsigned int i = 0; i < samples; i++) { |
- int32_t sample = prng->Rand(low, high); |
- EXPECT_LE(low, sample); |
- EXPECT_GE(high, sample); |
- buckets[unsigned_difference<int32_t>(sample, low) / numbers_per_bucket]++; |
- } |
- |
- for (unsigned int i = 0; i < bucket_count; i++) { |
- // Expect the result to be within 3 standard deviations of the mean, |
- // or more generally, within sigma_level standard deviations of the mean. |
- double mean = static_cast<double>(samples) / bucket_count; |
- EXPECT_NEAR(buckets[i], mean, sigma_level * sqrt(mean)); |
- } |
-} |
- |
-// The range of the random numbers is divided into bucket_count intervals |
-// of consecutive numbers. Check that approximately equally many numbers |
-// from each inteval are generated. |
-void BucketTestUnsignedInterval(unsigned int bucket_count, |
- unsigned int samples, |
- uint32_t low, |
- uint32_t high, |
- int sigma_level, |
- Random* prng) { |
- std::vector<unsigned int> buckets(bucket_count, 0); |
- |
- ASSERT_GE(high, low); |
- ASSERT_GE(bucket_count, 2u); |
- uint32_t interval = high - low + 1; |
- uint32_t numbers_per_bucket; |
- if (interval == 0) { |
- // The computation high - low + 1 should be 2^32 but overflowed |
- // Hence, bucket_count must be a power of 2 |
- ASSERT_EQ(bucket_count & (bucket_count - 1), 0u); |
- numbers_per_bucket = (0x80000000u / bucket_count) * 2; |
- } else { |
- ASSERT_EQ(interval % bucket_count, 0u); |
- numbers_per_bucket = interval / bucket_count; |
- } |
- |
- for (unsigned int i = 0; i < samples; i++) { |
- uint32_t sample = prng->Rand(low, high); |
- EXPECT_LE(low, sample); |
- EXPECT_GE(high, sample); |
- buckets[(sample - low) / numbers_per_bucket]++; |
- } |
- |
- for (unsigned int i = 0; i < bucket_count; i++) { |
- // Expect the result to be within 3 standard deviations of the mean, |
- // or more generally, within sigma_level standard deviations of the mean. |
- double mean = static_cast<double>(samples) / bucket_count; |
- EXPECT_NEAR(buckets[i], mean, sigma_level * sqrt(mean)); |
- } |
-} |
- |
-TEST(RandomNumberGeneratorTest, UniformUnsignedInterval) { |
- Random prng(299792458ull); |
- BucketTestUnsignedInterval(2, 100000, 0, 1, 3, &prng); |
- BucketTestUnsignedInterval(7, 100000, 1, 14, 3, &prng); |
- BucketTestUnsignedInterval(11, 100000, 1000, 1010, 3, &prng); |
- BucketTestUnsignedInterval(100, 100000, 0, 99, 3, &prng); |
- BucketTestUnsignedInterval(2, 100000, 0, 4294967295, 3, &prng); |
- BucketTestUnsignedInterval(17, 100000, 455, 2147484110, 3, &prng); |
- // 99.7% of all samples will be within 3 standard deviations of the mean, |
- // but since we test 1000 buckets we allow an interval of 4 sigma. |
- BucketTestUnsignedInterval(1000, 1000000, 0, 2147483999, 4, &prng); |
-} |
- |
-// Disabled for UBSan: https://bugs.chromium.org/p/webrtc/issues/detail?id=5491 |
-#ifdef UNDEFINED_SANITIZER |
-#define MAYBE_UniformSignedInterval DISABLED_UniformSignedInterval |
-#else |
-#define MAYBE_UniformSignedInterval UniformSignedInterval |
-#endif |
-TEST(RandomNumberGeneratorTest, MAYBE_UniformSignedInterval) { |
- Random prng(66260695729ull); |
- BucketTestSignedInterval(2, 100000, 0, 1, 3, &prng); |
- BucketTestSignedInterval(7, 100000, -2, 4, 3, &prng); |
- BucketTestSignedInterval(11, 100000, 1000, 1010, 3, &prng); |
- BucketTestSignedInterval(100, 100000, 0, 99, 3, &prng); |
- BucketTestSignedInterval(2, 100000, std::numeric_limits<int32_t>::min(), |
- std::numeric_limits<int32_t>::max(), 3, &prng); |
- BucketTestSignedInterval(17, 100000, -1073741826, 1073741829, 3, &prng); |
- // 99.7% of all samples will be within 3 standard deviations of the mean, |
- // but since we test 1000 buckets we allow an interval of 4 sigma. |
- BucketTestSignedInterval(1000, 1000000, -352, 2147483647, 4, &prng); |
-} |
- |
-// The range of the random numbers is divided into bucket_count intervals |
-// of consecutive numbers. Check that approximately equally many numbers |
-// from each inteval are generated. |
-void BucketTestFloat(unsigned int bucket_count, |
- unsigned int samples, |
- int sigma_level, |
- Random* prng) { |
- ASSERT_GE(bucket_count, 2u); |
- std::vector<unsigned int> buckets(bucket_count, 0); |
- |
- for (unsigned int i = 0; i < samples; i++) { |
- uint32_t sample = bucket_count * prng->Rand<float>(); |
- EXPECT_LE(0u, sample); |
- EXPECT_GE(bucket_count - 1, sample); |
- buckets[sample]++; |
- } |
- |
- for (unsigned int i = 0; i < bucket_count; i++) { |
- // Expect the result to be within 3 standard deviations of the mean, |
- // or more generally, within sigma_level standard deviations of the mean. |
- double mean = static_cast<double>(samples) / bucket_count; |
- EXPECT_NEAR(buckets[i], mean, sigma_level * sqrt(mean)); |
- } |
-} |
- |
-TEST(RandomNumberGeneratorTest, UniformFloatInterval) { |
- Random prng(1380648813ull); |
- BucketTestFloat(100, 100000, 3, &prng); |
- // 99.7% of all samples will be within 3 standard deviations of the mean, |
- // but since we test 1000 buckets we allow an interval of 4 sigma. |
- // BucketTestSignedInterval(1000, 1000000, -352, 2147483647, 4, &prng); |
-} |
- |
-TEST(RandomNumberGeneratorTest, SignedHasSameBitPattern) { |
- Random prng_signed(66738480ull), prng_unsigned(66738480ull); |
- |
- for (int i = 0; i < 1000; i++) { |
- signed int s = prng_signed.Rand<signed int>(); |
- unsigned int u = prng_unsigned.Rand<unsigned int>(); |
- EXPECT_EQ(u, static_cast<unsigned int>(s)); |
- } |
- |
- for (int i = 0; i < 1000; i++) { |
- int16_t s = prng_signed.Rand<int16_t>(); |
- uint16_t u = prng_unsigned.Rand<uint16_t>(); |
- EXPECT_EQ(u, static_cast<uint16_t>(s)); |
- } |
- |
- for (int i = 0; i < 1000; i++) { |
- signed char s = prng_signed.Rand<signed char>(); |
- unsigned char u = prng_unsigned.Rand<unsigned char>(); |
- EXPECT_EQ(u, static_cast<unsigned char>(s)); |
- } |
-} |
- |
-TEST(RandomNumberGeneratorTest, Gaussian) { |
- const int kN = 100000; |
- const int kBuckets = 100; |
- const double kMean = 49; |
- const double kStddev = 10; |
- |
- Random prng(1256637061); |
- |
- std::vector<unsigned int> buckets(kBuckets, 0); |
- for (int i = 0; i < kN; i++) { |
- int index = prng.Gaussian(kMean, kStddev) + 0.5; |
- if (index >= 0 && index < kBuckets) { |
- buckets[index]++; |
- } |
- } |
- |
- const double kPi = 3.14159265358979323846; |
- const double kScale = 1 / (kStddev * sqrt(2.0 * kPi)); |
- const double kDiv = -2.0 * kStddev * kStddev; |
- for (int n = 0; n < kBuckets; ++n) { |
- // Use Simpsons rule to estimate the probability that a random gaussian |
- // sample is in the interval [n-0.5, n+0.5]. |
- double f_left = kScale * exp((n - kMean - 0.5) * (n - kMean - 0.5) / kDiv); |
- double f_mid = kScale * exp((n - kMean) * (n - kMean) / kDiv); |
- double f_right = kScale * exp((n - kMean + 0.5) * (n - kMean + 0.5) / kDiv); |
- double normal_dist = (f_left + 4 * f_mid + f_right) / 6; |
- // Expect the number of samples to be within 3 standard deviations |
- // (rounded up) of the expected number of samples in the bucket. |
- EXPECT_NEAR(buckets[n], kN * normal_dist, 3 * sqrt(kN * normal_dist) + 1); |
- } |
-} |
- |
-} // namespace webrtc |