| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 * Copyright 2004 The WebRTC Project Authors. All rights reserved. | |
| 3 * | |
| 4 * Use of this source code is governed by a BSD-style license | |
| 5 * that can be found in the LICENSE file in the root of the source | |
| 6 * tree. An additional intellectual property rights grant can be found | |
| 7 * in the file PATENTS. All contributing project authors may | |
| 8 * be found in the AUTHORS file in the root of the source tree. | |
| 9 */ | |
| 10 | |
| 11 #include "webrtc/base/win32.h" | |
| 12 | |
| 13 #include <winsock2.h> | |
| 14 #include <ws2tcpip.h> | |
| 15 #include <algorithm> | |
| 16 | |
| 17 #include "webrtc/base/arraysize.h" | |
| 18 #include "webrtc/base/basictypes.h" | |
| 19 #include "webrtc/base/byteorder.h" | |
| 20 #include "webrtc/base/checks.h" | |
| 21 #include "webrtc/base/logging.h" | |
| 22 | |
| 23 namespace rtc { | |
| 24 | |
| 25 // Helper function declarations for inet_ntop/inet_pton. | |
| 26 static const char* inet_ntop_v4(const void* src, char* dst, socklen_t size); | |
| 27 static const char* inet_ntop_v6(const void* src, char* dst, socklen_t size); | |
| 28 static int inet_pton_v4(const char* src, void* dst); | |
| 29 static int inet_pton_v6(const char* src, void* dst); | |
| 30 | |
| 31 // Implementation of inet_ntop (create a printable representation of an | |
| 32 // ip address). XP doesn't have its own inet_ntop, and | |
| 33 // WSAAddressToString requires both IPv6 to be installed and for Winsock | |
| 34 // to be initialized. | |
| 35 const char* win32_inet_ntop(int af, const void *src, | |
| 36 char* dst, socklen_t size) { | |
| 37 if (!src || !dst) { | |
| 38 return nullptr; | |
| 39 } | |
| 40 switch (af) { | |
| 41 case AF_INET: { | |
| 42 return inet_ntop_v4(src, dst, size); | |
| 43 } | |
| 44 case AF_INET6: { | |
| 45 return inet_ntop_v6(src, dst, size); | |
| 46 } | |
| 47 } | |
| 48 return nullptr; | |
| 49 } | |
| 50 | |
| 51 // As above, but for inet_pton. Implements inet_pton for v4 and v6. | |
| 52 // Note that our inet_ntop will output normal 'dotted' v4 addresses only. | |
| 53 int win32_inet_pton(int af, const char* src, void* dst) { | |
| 54 if (!src || !dst) { | |
| 55 return 0; | |
| 56 } | |
| 57 if (af == AF_INET) { | |
| 58 return inet_pton_v4(src, dst); | |
| 59 } else if (af == AF_INET6) { | |
| 60 return inet_pton_v6(src, dst); | |
| 61 } | |
| 62 return -1; | |
| 63 } | |
| 64 | |
| 65 // Helper function for inet_ntop for IPv4 addresses. | |
| 66 // Outputs "dotted-quad" decimal notation. | |
| 67 const char* inet_ntop_v4(const void* src, char* dst, socklen_t size) { | |
| 68 if (size < INET_ADDRSTRLEN) { | |
| 69 return nullptr; | |
| 70 } | |
| 71 const struct in_addr* as_in_addr = | |
| 72 reinterpret_cast<const struct in_addr*>(src); | |
| 73 rtc::sprintfn(dst, size, "%d.%d.%d.%d", | |
| 74 as_in_addr->S_un.S_un_b.s_b1, | |
| 75 as_in_addr->S_un.S_un_b.s_b2, | |
| 76 as_in_addr->S_un.S_un_b.s_b3, | |
| 77 as_in_addr->S_un.S_un_b.s_b4); | |
| 78 return dst; | |
| 79 } | |
| 80 | |
| 81 // Helper function for inet_ntop for IPv6 addresses. | |
| 82 const char* inet_ntop_v6(const void* src, char* dst, socklen_t size) { | |
| 83 if (size < INET6_ADDRSTRLEN) { | |
| 84 return nullptr; | |
| 85 } | |
| 86 const uint16_t* as_shorts = reinterpret_cast<const uint16_t*>(src); | |
| 87 int runpos[8]; | |
| 88 int current = 1; | |
| 89 int max = 0; | |
| 90 int maxpos = -1; | |
| 91 int run_array_size = arraysize(runpos); | |
| 92 // Run over the address marking runs of 0s. | |
| 93 for (int i = 0; i < run_array_size; ++i) { | |
| 94 if (as_shorts[i] == 0) { | |
| 95 runpos[i] = current; | |
| 96 if (current > max) { | |
| 97 maxpos = i; | |
| 98 max = current; | |
| 99 } | |
| 100 ++current; | |
| 101 } else { | |
| 102 runpos[i] = -1; | |
| 103 current = 1; | |
| 104 } | |
| 105 } | |
| 106 | |
| 107 if (max > 0) { | |
| 108 int tmpmax = maxpos; | |
| 109 // Run back through, setting -1 for all but the longest run. | |
| 110 for (int i = run_array_size - 1; i >= 0; i--) { | |
| 111 if (i > tmpmax) { | |
| 112 runpos[i] = -1; | |
| 113 } else if (runpos[i] == -1) { | |
| 114 // We're less than maxpos, we hit a -1, so the 'good' run is done. | |
| 115 // Setting tmpmax -1 means all remaining positions get set to -1. | |
| 116 tmpmax = -1; | |
| 117 } | |
| 118 } | |
| 119 } | |
| 120 | |
| 121 char* cursor = dst; | |
| 122 // Print IPv4 compatible and IPv4 mapped addresses using the IPv4 helper. | |
| 123 // These addresses have an initial run of either eight zero-bytes followed | |
| 124 // by 0xFFFF, or an initial run of ten zero-bytes. | |
| 125 if (runpos[0] == 1 && (maxpos == 5 || | |
| 126 (maxpos == 4 && as_shorts[5] == 0xFFFF))) { | |
| 127 *cursor++ = ':'; | |
| 128 *cursor++ = ':'; | |
| 129 if (maxpos == 4) { | |
| 130 cursor += rtc::sprintfn(cursor, INET6_ADDRSTRLEN - 2, "ffff:"); | |
| 131 } | |
| 132 const struct in_addr* as_v4 = | |
| 133 reinterpret_cast<const struct in_addr*>(&(as_shorts[6])); | |
| 134 inet_ntop_v4(as_v4, cursor, | |
| 135 static_cast<socklen_t>(INET6_ADDRSTRLEN - (cursor - dst))); | |
| 136 } else { | |
| 137 for (int i = 0; i < run_array_size; ++i) { | |
| 138 if (runpos[i] == -1) { | |
| 139 cursor += rtc::sprintfn(cursor, | |
| 140 INET6_ADDRSTRLEN - (cursor - dst), | |
| 141 "%x", NetworkToHost16(as_shorts[i])); | |
| 142 if (i != 7 && runpos[i + 1] != 1) { | |
| 143 *cursor++ = ':'; | |
| 144 } | |
| 145 } else if (runpos[i] == 1) { | |
| 146 // Entered the run; print the colons and skip the run. | |
| 147 *cursor++ = ':'; | |
| 148 *cursor++ = ':'; | |
| 149 i += (max - 1); | |
| 150 } | |
| 151 } | |
| 152 } | |
| 153 return dst; | |
| 154 } | |
| 155 | |
| 156 // Helper function for inet_pton for IPv4 addresses. | |
| 157 // |src| points to a character string containing an IPv4 network address in | |
| 158 // dotted-decimal format, "ddd.ddd.ddd.ddd", where ddd is a decimal number | |
| 159 // of up to three digits in the range 0 to 255. | |
| 160 // The address is converted and copied to dst, | |
| 161 // which must be sizeof(struct in_addr) (4) bytes (32 bits) long. | |
| 162 int inet_pton_v4(const char* src, void* dst) { | |
| 163 const int kIpv4AddressSize = 4; | |
| 164 int found = 0; | |
| 165 const char* src_pos = src; | |
| 166 unsigned char result[kIpv4AddressSize] = {0}; | |
| 167 | |
| 168 while (*src_pos != '\0') { | |
| 169 // strtol won't treat whitespace characters in the begining as an error, | |
| 170 // so check to ensure this is started with digit before passing to strtol. | |
| 171 if (!isdigit(*src_pos)) { | |
| 172 return 0; | |
| 173 } | |
| 174 char* end_pos; | |
| 175 long value = strtol(src_pos, &end_pos, 10); | |
| 176 if (value < 0 || value > 255 || src_pos == end_pos) { | |
| 177 return 0; | |
| 178 } | |
| 179 ++found; | |
| 180 if (found > kIpv4AddressSize) { | |
| 181 return 0; | |
| 182 } | |
| 183 result[found - 1] = static_cast<unsigned char>(value); | |
| 184 src_pos = end_pos; | |
| 185 if (*src_pos == '.') { | |
| 186 // There's more. | |
| 187 ++src_pos; | |
| 188 } else if (*src_pos != '\0') { | |
| 189 // If it's neither '.' nor '\0' then return fail. | |
| 190 return 0; | |
| 191 } | |
| 192 } | |
| 193 if (found != kIpv4AddressSize) { | |
| 194 return 0; | |
| 195 } | |
| 196 memcpy(dst, result, sizeof(result)); | |
| 197 return 1; | |
| 198 } | |
| 199 | |
| 200 // Helper function for inet_pton for IPv6 addresses. | |
| 201 int inet_pton_v6(const char* src, void* dst) { | |
| 202 // sscanf will pick any other invalid chars up, but it parses 0xnnnn as hex. | |
| 203 // Check for literal x in the input string. | |
| 204 const char* readcursor = src; | |
| 205 char c = *readcursor++; | |
| 206 while (c) { | |
| 207 if (c == 'x') { | |
| 208 return 0; | |
| 209 } | |
| 210 c = *readcursor++; | |
| 211 } | |
| 212 readcursor = src; | |
| 213 | |
| 214 struct in6_addr an_addr; | |
| 215 memset(&an_addr, 0, sizeof(an_addr)); | |
| 216 | |
| 217 uint16_t* addr_cursor = reinterpret_cast<uint16_t*>(&an_addr.s6_addr[0]); | |
| 218 uint16_t* addr_end = reinterpret_cast<uint16_t*>(&an_addr.s6_addr[16]); | |
| 219 bool seencompressed = false; | |
| 220 | |
| 221 // Addresses that start with "::" (i.e., a run of initial zeros) or | |
| 222 // "::ffff:" can potentially be IPv4 mapped or compatibility addresses. | |
| 223 // These have dotted-style IPv4 addresses on the end (e.g. "::192.168.7.1"). | |
| 224 if (*readcursor == ':' && *(readcursor+1) == ':' && | |
| 225 *(readcursor + 2) != 0) { | |
| 226 // Check for periods, which we'll take as a sign of v4 addresses. | |
| 227 const char* addrstart = readcursor + 2; | |
| 228 if (rtc::strchr(addrstart, ".")) { | |
| 229 const char* colon = rtc::strchr(addrstart, "::"); | |
| 230 if (colon) { | |
| 231 uint16_t a_short; | |
| 232 int bytesread = 0; | |
| 233 if (sscanf(addrstart, "%hx%n", &a_short, &bytesread) != 1 || | |
| 234 a_short != 0xFFFF || bytesread != 4) { | |
| 235 // Colons + periods means has to be ::ffff:a.b.c.d. But it wasn't. | |
| 236 return 0; | |
| 237 } else { | |
| 238 an_addr.s6_addr[10] = 0xFF; | |
| 239 an_addr.s6_addr[11] = 0xFF; | |
| 240 addrstart = colon + 1; | |
| 241 } | |
| 242 } | |
| 243 struct in_addr v4; | |
| 244 if (inet_pton_v4(addrstart, &v4.s_addr)) { | |
| 245 memcpy(&an_addr.s6_addr[12], &v4, sizeof(v4)); | |
| 246 memcpy(dst, &an_addr, sizeof(an_addr)); | |
| 247 return 1; | |
| 248 } else { | |
| 249 // Invalid v4 address. | |
| 250 return 0; | |
| 251 } | |
| 252 } | |
| 253 } | |
| 254 | |
| 255 // For addresses without a trailing IPv4 component ('normal' IPv6 addresses). | |
| 256 while (*readcursor != 0 && addr_cursor < addr_end) { | |
| 257 if (*readcursor == ':') { | |
| 258 if (*(readcursor + 1) == ':') { | |
| 259 if (seencompressed) { | |
| 260 // Can only have one compressed run of zeroes ("::") per address. | |
| 261 return 0; | |
| 262 } | |
| 263 // Hit a compressed run. Count colons to figure out how much of the | |
| 264 // address is skipped. | |
| 265 readcursor += 2; | |
| 266 const char* coloncounter = readcursor; | |
| 267 int coloncount = 0; | |
| 268 if (*coloncounter == 0) { | |
| 269 // Special case - trailing ::. | |
| 270 addr_cursor = addr_end; | |
| 271 } else { | |
| 272 while (*coloncounter) { | |
| 273 if (*coloncounter == ':') { | |
| 274 ++coloncount; | |
| 275 } | |
| 276 ++coloncounter; | |
| 277 } | |
| 278 // (coloncount + 1) is the number of shorts left in the address. | |
| 279 // If this number is greater than the number of available shorts, the | |
| 280 // address is malformed. | |
| 281 if (coloncount + 1 > addr_end - addr_cursor) { | |
| 282 return 0; | |
| 283 } | |
| 284 addr_cursor = addr_end - (coloncount + 1); | |
| 285 seencompressed = true; | |
| 286 } | |
| 287 } else { | |
| 288 ++readcursor; | |
| 289 } | |
| 290 } else { | |
| 291 uint16_t word; | |
| 292 int bytesread = 0; | |
| 293 if (sscanf(readcursor, "%4hx%n", &word, &bytesread) != 1) { | |
| 294 return 0; | |
| 295 } else { | |
| 296 *addr_cursor = HostToNetwork16(word); | |
| 297 ++addr_cursor; | |
| 298 readcursor += bytesread; | |
| 299 if (*readcursor != ':' && *readcursor != '\0') { | |
| 300 return 0; | |
| 301 } | |
| 302 } | |
| 303 } | |
| 304 } | |
| 305 | |
| 306 if (*readcursor != '\0' || addr_cursor < addr_end) { | |
| 307 // Catches addresses too short or too long. | |
| 308 return 0; | |
| 309 } | |
| 310 memcpy(dst, &an_addr, sizeof(an_addr)); | |
| 311 return 1; | |
| 312 } | |
| 313 | |
| 314 // | |
| 315 // Unix time is in seconds relative to 1/1/1970. So we compute the windows | |
| 316 // FILETIME of that time/date, then we add/subtract in appropriate units to | |
| 317 // convert to/from unix time. | |
| 318 // The units of FILETIME are 100ns intervals, so by multiplying by or dividing | |
| 319 // by 10000000, we can convert to/from seconds. | |
| 320 // | |
| 321 // FileTime = UnixTime*10000000 + FileTime(1970) | |
| 322 // UnixTime = (FileTime-FileTime(1970))/10000000 | |
| 323 // | |
| 324 | |
| 325 void FileTimeToUnixTime(const FILETIME& ft, time_t* ut) { | |
| 326 RTC_DCHECK(nullptr != ut); | |
| 327 | |
| 328 // FILETIME has an earlier date base than time_t (1/1/1970), so subtract off | |
| 329 // the difference. | |
| 330 SYSTEMTIME base_st; | |
| 331 memset(&base_st, 0, sizeof(base_st)); | |
| 332 base_st.wDay = 1; | |
| 333 base_st.wMonth = 1; | |
| 334 base_st.wYear = 1970; | |
| 335 | |
| 336 FILETIME base_ft; | |
| 337 SystemTimeToFileTime(&base_st, &base_ft); | |
| 338 | |
| 339 ULARGE_INTEGER base_ul, current_ul; | |
| 340 memcpy(&base_ul, &base_ft, sizeof(FILETIME)); | |
| 341 memcpy(¤t_ul, &ft, sizeof(FILETIME)); | |
| 342 | |
| 343 // Divide by big number to convert to seconds, then subtract out the 1970 | |
| 344 // base date value. | |
| 345 const ULONGLONG RATIO = 10000000; | |
| 346 *ut = static_cast<time_t>((current_ul.QuadPart - base_ul.QuadPart) / RATIO); | |
| 347 } | |
| 348 | |
| 349 void UnixTimeToFileTime(const time_t& ut, FILETIME* ft) { | |
| 350 RTC_DCHECK(nullptr != ft); | |
| 351 | |
| 352 // FILETIME has an earlier date base than time_t (1/1/1970), so add in | |
| 353 // the difference. | |
| 354 SYSTEMTIME base_st; | |
| 355 memset(&base_st, 0, sizeof(base_st)); | |
| 356 base_st.wDay = 1; | |
| 357 base_st.wMonth = 1; | |
| 358 base_st.wYear = 1970; | |
| 359 | |
| 360 FILETIME base_ft; | |
| 361 SystemTimeToFileTime(&base_st, &base_ft); | |
| 362 | |
| 363 ULARGE_INTEGER base_ul; | |
| 364 memcpy(&base_ul, &base_ft, sizeof(FILETIME)); | |
| 365 | |
| 366 // Multiply by big number to convert to 100ns units, then add in the 1970 | |
| 367 // base date value. | |
| 368 const ULONGLONG RATIO = 10000000; | |
| 369 ULARGE_INTEGER current_ul; | |
| 370 current_ul.QuadPart = base_ul.QuadPart + static_cast<int64_t>(ut) * RATIO; | |
| 371 memcpy(ft, ¤t_ul, sizeof(FILETIME)); | |
| 372 } | |
| 373 | |
| 374 bool Utf8ToWindowsFilename(const std::string& utf8, std::wstring* filename) { | |
| 375 // TODO: Integrate into fileutils.h | |
| 376 // TODO: Handle wide and non-wide cases via TCHAR? | |
| 377 // TODO: Skip \\?\ processing if the length is not > MAX_PATH? | |
| 378 // TODO: Write unittests | |
| 379 | |
| 380 // Convert to Utf16 | |
| 381 int wlen = | |
| 382 ::MultiByteToWideChar(CP_UTF8, 0, utf8.c_str(), | |
| 383 static_cast<int>(utf8.length() + 1), nullptr, 0); | |
| 384 if (0 == wlen) { | |
| 385 return false; | |
| 386 } | |
| 387 wchar_t* wfilename = STACK_ARRAY(wchar_t, wlen); | |
| 388 if (0 == ::MultiByteToWideChar(CP_UTF8, 0, utf8.c_str(), | |
| 389 static_cast<int>(utf8.length() + 1), | |
| 390 wfilename, wlen)) { | |
| 391 return false; | |
| 392 } | |
| 393 // Replace forward slashes with backslashes | |
| 394 std::replace(wfilename, wfilename + wlen, L'/', L'\\'); | |
| 395 // Convert to complete filename | |
| 396 DWORD full_len = ::GetFullPathName(wfilename, 0, nullptr, nullptr); | |
| 397 if (0 == full_len) { | |
| 398 return false; | |
| 399 } | |
| 400 wchar_t* filepart = nullptr; | |
| 401 wchar_t* full_filename = STACK_ARRAY(wchar_t, full_len + 6); | |
| 402 wchar_t* start = full_filename + 6; | |
| 403 if (0 == ::GetFullPathName(wfilename, full_len, start, &filepart)) { | |
| 404 return false; | |
| 405 } | |
| 406 // Add long-path prefix | |
| 407 const wchar_t kLongPathPrefix[] = L"\\\\?\\UNC"; | |
| 408 if ((start[0] != L'\\') || (start[1] != L'\\')) { | |
| 409 // Non-unc path: <pathname> | |
| 410 // Becomes: \\?\<pathname> | |
| 411 start -= 4; | |
| 412 RTC_DCHECK(start >= full_filename); | |
| 413 memcpy(start, kLongPathPrefix, 4 * sizeof(wchar_t)); | |
| 414 } else if (start[2] != L'?') { | |
| 415 // Unc path: \\<server>\<pathname> | |
| 416 // Becomes: \\?\UNC\<server>\<pathname> | |
| 417 start -= 6; | |
| 418 RTC_DCHECK(start >= full_filename); | |
| 419 memcpy(start, kLongPathPrefix, 7 * sizeof(wchar_t)); | |
| 420 } else { | |
| 421 // Already in long-path form. | |
| 422 } | |
| 423 filename->assign(start); | |
| 424 return true; | |
| 425 } | |
| 426 | |
| 427 bool GetOsVersion(int* major, int* minor, int* build) { | |
| 428 OSVERSIONINFO info = {0}; | |
| 429 info.dwOSVersionInfoSize = sizeof(info); | |
| 430 if (GetVersionEx(&info)) { | |
| 431 if (major) *major = info.dwMajorVersion; | |
| 432 if (minor) *minor = info.dwMinorVersion; | |
| 433 if (build) *build = info.dwBuildNumber; | |
| 434 return true; | |
| 435 } | |
| 436 return false; | |
| 437 } | |
| 438 | |
| 439 bool GetCurrentProcessIntegrityLevel(int* level) { | |
| 440 bool ret = false; | |
| 441 HANDLE process = ::GetCurrentProcess(), token; | |
| 442 if (OpenProcessToken(process, TOKEN_QUERY | TOKEN_QUERY_SOURCE, &token)) { | |
| 443 DWORD size; | |
| 444 if (!GetTokenInformation(token, TokenIntegrityLevel, nullptr, 0, &size) && | |
| 445 GetLastError() == ERROR_INSUFFICIENT_BUFFER) { | |
| 446 char* buf = STACK_ARRAY(char, size); | |
| 447 TOKEN_MANDATORY_LABEL* til = | |
| 448 reinterpret_cast<TOKEN_MANDATORY_LABEL*>(buf); | |
| 449 if (GetTokenInformation(token, TokenIntegrityLevel, til, size, &size)) { | |
| 450 | |
| 451 DWORD count = *GetSidSubAuthorityCount(til->Label.Sid); | |
| 452 *level = *GetSidSubAuthority(til->Label.Sid, count - 1); | |
| 453 ret = true; | |
| 454 } | |
| 455 } | |
| 456 CloseHandle(token); | |
| 457 } | |
| 458 return ret; | |
| 459 } | |
| 460 | |
| 461 } // namespace rtc | |
| OLD | NEW |