OLD | NEW |
| (Empty) |
1 /* | |
2 * Copyright 2004 The WebRTC Project Authors. All rights reserved. | |
3 * | |
4 * Use of this source code is governed by a BSD-style license | |
5 * that can be found in the LICENSE file in the root of the source | |
6 * tree. An additional intellectual property rights grant can be found | |
7 * in the file PATENTS. All contributing project authors may | |
8 * be found in the AUTHORS file in the root of the source tree. | |
9 */ | |
10 | |
11 #include "webrtc/base/win32.h" | |
12 | |
13 #include <winsock2.h> | |
14 #include <ws2tcpip.h> | |
15 #include <algorithm> | |
16 | |
17 #include "webrtc/base/arraysize.h" | |
18 #include "webrtc/base/basictypes.h" | |
19 #include "webrtc/base/byteorder.h" | |
20 #include "webrtc/base/checks.h" | |
21 #include "webrtc/base/logging.h" | |
22 | |
23 namespace rtc { | |
24 | |
25 // Helper function declarations for inet_ntop/inet_pton. | |
26 static const char* inet_ntop_v4(const void* src, char* dst, socklen_t size); | |
27 static const char* inet_ntop_v6(const void* src, char* dst, socklen_t size); | |
28 static int inet_pton_v4(const char* src, void* dst); | |
29 static int inet_pton_v6(const char* src, void* dst); | |
30 | |
31 // Implementation of inet_ntop (create a printable representation of an | |
32 // ip address). XP doesn't have its own inet_ntop, and | |
33 // WSAAddressToString requires both IPv6 to be installed and for Winsock | |
34 // to be initialized. | |
35 const char* win32_inet_ntop(int af, const void *src, | |
36 char* dst, socklen_t size) { | |
37 if (!src || !dst) { | |
38 return nullptr; | |
39 } | |
40 switch (af) { | |
41 case AF_INET: { | |
42 return inet_ntop_v4(src, dst, size); | |
43 } | |
44 case AF_INET6: { | |
45 return inet_ntop_v6(src, dst, size); | |
46 } | |
47 } | |
48 return nullptr; | |
49 } | |
50 | |
51 // As above, but for inet_pton. Implements inet_pton for v4 and v6. | |
52 // Note that our inet_ntop will output normal 'dotted' v4 addresses only. | |
53 int win32_inet_pton(int af, const char* src, void* dst) { | |
54 if (!src || !dst) { | |
55 return 0; | |
56 } | |
57 if (af == AF_INET) { | |
58 return inet_pton_v4(src, dst); | |
59 } else if (af == AF_INET6) { | |
60 return inet_pton_v6(src, dst); | |
61 } | |
62 return -1; | |
63 } | |
64 | |
65 // Helper function for inet_ntop for IPv4 addresses. | |
66 // Outputs "dotted-quad" decimal notation. | |
67 const char* inet_ntop_v4(const void* src, char* dst, socklen_t size) { | |
68 if (size < INET_ADDRSTRLEN) { | |
69 return nullptr; | |
70 } | |
71 const struct in_addr* as_in_addr = | |
72 reinterpret_cast<const struct in_addr*>(src); | |
73 rtc::sprintfn(dst, size, "%d.%d.%d.%d", | |
74 as_in_addr->S_un.S_un_b.s_b1, | |
75 as_in_addr->S_un.S_un_b.s_b2, | |
76 as_in_addr->S_un.S_un_b.s_b3, | |
77 as_in_addr->S_un.S_un_b.s_b4); | |
78 return dst; | |
79 } | |
80 | |
81 // Helper function for inet_ntop for IPv6 addresses. | |
82 const char* inet_ntop_v6(const void* src, char* dst, socklen_t size) { | |
83 if (size < INET6_ADDRSTRLEN) { | |
84 return nullptr; | |
85 } | |
86 const uint16_t* as_shorts = reinterpret_cast<const uint16_t*>(src); | |
87 int runpos[8]; | |
88 int current = 1; | |
89 int max = 0; | |
90 int maxpos = -1; | |
91 int run_array_size = arraysize(runpos); | |
92 // Run over the address marking runs of 0s. | |
93 for (int i = 0; i < run_array_size; ++i) { | |
94 if (as_shorts[i] == 0) { | |
95 runpos[i] = current; | |
96 if (current > max) { | |
97 maxpos = i; | |
98 max = current; | |
99 } | |
100 ++current; | |
101 } else { | |
102 runpos[i] = -1; | |
103 current = 1; | |
104 } | |
105 } | |
106 | |
107 if (max > 0) { | |
108 int tmpmax = maxpos; | |
109 // Run back through, setting -1 for all but the longest run. | |
110 for (int i = run_array_size - 1; i >= 0; i--) { | |
111 if (i > tmpmax) { | |
112 runpos[i] = -1; | |
113 } else if (runpos[i] == -1) { | |
114 // We're less than maxpos, we hit a -1, so the 'good' run is done. | |
115 // Setting tmpmax -1 means all remaining positions get set to -1. | |
116 tmpmax = -1; | |
117 } | |
118 } | |
119 } | |
120 | |
121 char* cursor = dst; | |
122 // Print IPv4 compatible and IPv4 mapped addresses using the IPv4 helper. | |
123 // These addresses have an initial run of either eight zero-bytes followed | |
124 // by 0xFFFF, or an initial run of ten zero-bytes. | |
125 if (runpos[0] == 1 && (maxpos == 5 || | |
126 (maxpos == 4 && as_shorts[5] == 0xFFFF))) { | |
127 *cursor++ = ':'; | |
128 *cursor++ = ':'; | |
129 if (maxpos == 4) { | |
130 cursor += rtc::sprintfn(cursor, INET6_ADDRSTRLEN - 2, "ffff:"); | |
131 } | |
132 const struct in_addr* as_v4 = | |
133 reinterpret_cast<const struct in_addr*>(&(as_shorts[6])); | |
134 inet_ntop_v4(as_v4, cursor, | |
135 static_cast<socklen_t>(INET6_ADDRSTRLEN - (cursor - dst))); | |
136 } else { | |
137 for (int i = 0; i < run_array_size; ++i) { | |
138 if (runpos[i] == -1) { | |
139 cursor += rtc::sprintfn(cursor, | |
140 INET6_ADDRSTRLEN - (cursor - dst), | |
141 "%x", NetworkToHost16(as_shorts[i])); | |
142 if (i != 7 && runpos[i + 1] != 1) { | |
143 *cursor++ = ':'; | |
144 } | |
145 } else if (runpos[i] == 1) { | |
146 // Entered the run; print the colons and skip the run. | |
147 *cursor++ = ':'; | |
148 *cursor++ = ':'; | |
149 i += (max - 1); | |
150 } | |
151 } | |
152 } | |
153 return dst; | |
154 } | |
155 | |
156 // Helper function for inet_pton for IPv4 addresses. | |
157 // |src| points to a character string containing an IPv4 network address in | |
158 // dotted-decimal format, "ddd.ddd.ddd.ddd", where ddd is a decimal number | |
159 // of up to three digits in the range 0 to 255. | |
160 // The address is converted and copied to dst, | |
161 // which must be sizeof(struct in_addr) (4) bytes (32 bits) long. | |
162 int inet_pton_v4(const char* src, void* dst) { | |
163 const int kIpv4AddressSize = 4; | |
164 int found = 0; | |
165 const char* src_pos = src; | |
166 unsigned char result[kIpv4AddressSize] = {0}; | |
167 | |
168 while (*src_pos != '\0') { | |
169 // strtol won't treat whitespace characters in the begining as an error, | |
170 // so check to ensure this is started with digit before passing to strtol. | |
171 if (!isdigit(*src_pos)) { | |
172 return 0; | |
173 } | |
174 char* end_pos; | |
175 long value = strtol(src_pos, &end_pos, 10); | |
176 if (value < 0 || value > 255 || src_pos == end_pos) { | |
177 return 0; | |
178 } | |
179 ++found; | |
180 if (found > kIpv4AddressSize) { | |
181 return 0; | |
182 } | |
183 result[found - 1] = static_cast<unsigned char>(value); | |
184 src_pos = end_pos; | |
185 if (*src_pos == '.') { | |
186 // There's more. | |
187 ++src_pos; | |
188 } else if (*src_pos != '\0') { | |
189 // If it's neither '.' nor '\0' then return fail. | |
190 return 0; | |
191 } | |
192 } | |
193 if (found != kIpv4AddressSize) { | |
194 return 0; | |
195 } | |
196 memcpy(dst, result, sizeof(result)); | |
197 return 1; | |
198 } | |
199 | |
200 // Helper function for inet_pton for IPv6 addresses. | |
201 int inet_pton_v6(const char* src, void* dst) { | |
202 // sscanf will pick any other invalid chars up, but it parses 0xnnnn as hex. | |
203 // Check for literal x in the input string. | |
204 const char* readcursor = src; | |
205 char c = *readcursor++; | |
206 while (c) { | |
207 if (c == 'x') { | |
208 return 0; | |
209 } | |
210 c = *readcursor++; | |
211 } | |
212 readcursor = src; | |
213 | |
214 struct in6_addr an_addr; | |
215 memset(&an_addr, 0, sizeof(an_addr)); | |
216 | |
217 uint16_t* addr_cursor = reinterpret_cast<uint16_t*>(&an_addr.s6_addr[0]); | |
218 uint16_t* addr_end = reinterpret_cast<uint16_t*>(&an_addr.s6_addr[16]); | |
219 bool seencompressed = false; | |
220 | |
221 // Addresses that start with "::" (i.e., a run of initial zeros) or | |
222 // "::ffff:" can potentially be IPv4 mapped or compatibility addresses. | |
223 // These have dotted-style IPv4 addresses on the end (e.g. "::192.168.7.1"). | |
224 if (*readcursor == ':' && *(readcursor+1) == ':' && | |
225 *(readcursor + 2) != 0) { | |
226 // Check for periods, which we'll take as a sign of v4 addresses. | |
227 const char* addrstart = readcursor + 2; | |
228 if (rtc::strchr(addrstart, ".")) { | |
229 const char* colon = rtc::strchr(addrstart, "::"); | |
230 if (colon) { | |
231 uint16_t a_short; | |
232 int bytesread = 0; | |
233 if (sscanf(addrstart, "%hx%n", &a_short, &bytesread) != 1 || | |
234 a_short != 0xFFFF || bytesread != 4) { | |
235 // Colons + periods means has to be ::ffff:a.b.c.d. But it wasn't. | |
236 return 0; | |
237 } else { | |
238 an_addr.s6_addr[10] = 0xFF; | |
239 an_addr.s6_addr[11] = 0xFF; | |
240 addrstart = colon + 1; | |
241 } | |
242 } | |
243 struct in_addr v4; | |
244 if (inet_pton_v4(addrstart, &v4.s_addr)) { | |
245 memcpy(&an_addr.s6_addr[12], &v4, sizeof(v4)); | |
246 memcpy(dst, &an_addr, sizeof(an_addr)); | |
247 return 1; | |
248 } else { | |
249 // Invalid v4 address. | |
250 return 0; | |
251 } | |
252 } | |
253 } | |
254 | |
255 // For addresses without a trailing IPv4 component ('normal' IPv6 addresses). | |
256 while (*readcursor != 0 && addr_cursor < addr_end) { | |
257 if (*readcursor == ':') { | |
258 if (*(readcursor + 1) == ':') { | |
259 if (seencompressed) { | |
260 // Can only have one compressed run of zeroes ("::") per address. | |
261 return 0; | |
262 } | |
263 // Hit a compressed run. Count colons to figure out how much of the | |
264 // address is skipped. | |
265 readcursor += 2; | |
266 const char* coloncounter = readcursor; | |
267 int coloncount = 0; | |
268 if (*coloncounter == 0) { | |
269 // Special case - trailing ::. | |
270 addr_cursor = addr_end; | |
271 } else { | |
272 while (*coloncounter) { | |
273 if (*coloncounter == ':') { | |
274 ++coloncount; | |
275 } | |
276 ++coloncounter; | |
277 } | |
278 // (coloncount + 1) is the number of shorts left in the address. | |
279 // If this number is greater than the number of available shorts, the | |
280 // address is malformed. | |
281 if (coloncount + 1 > addr_end - addr_cursor) { | |
282 return 0; | |
283 } | |
284 addr_cursor = addr_end - (coloncount + 1); | |
285 seencompressed = true; | |
286 } | |
287 } else { | |
288 ++readcursor; | |
289 } | |
290 } else { | |
291 uint16_t word; | |
292 int bytesread = 0; | |
293 if (sscanf(readcursor, "%4hx%n", &word, &bytesread) != 1) { | |
294 return 0; | |
295 } else { | |
296 *addr_cursor = HostToNetwork16(word); | |
297 ++addr_cursor; | |
298 readcursor += bytesread; | |
299 if (*readcursor != ':' && *readcursor != '\0') { | |
300 return 0; | |
301 } | |
302 } | |
303 } | |
304 } | |
305 | |
306 if (*readcursor != '\0' || addr_cursor < addr_end) { | |
307 // Catches addresses too short or too long. | |
308 return 0; | |
309 } | |
310 memcpy(dst, &an_addr, sizeof(an_addr)); | |
311 return 1; | |
312 } | |
313 | |
314 // | |
315 // Unix time is in seconds relative to 1/1/1970. So we compute the windows | |
316 // FILETIME of that time/date, then we add/subtract in appropriate units to | |
317 // convert to/from unix time. | |
318 // The units of FILETIME are 100ns intervals, so by multiplying by or dividing | |
319 // by 10000000, we can convert to/from seconds. | |
320 // | |
321 // FileTime = UnixTime*10000000 + FileTime(1970) | |
322 // UnixTime = (FileTime-FileTime(1970))/10000000 | |
323 // | |
324 | |
325 void FileTimeToUnixTime(const FILETIME& ft, time_t* ut) { | |
326 RTC_DCHECK(nullptr != ut); | |
327 | |
328 // FILETIME has an earlier date base than time_t (1/1/1970), so subtract off | |
329 // the difference. | |
330 SYSTEMTIME base_st; | |
331 memset(&base_st, 0, sizeof(base_st)); | |
332 base_st.wDay = 1; | |
333 base_st.wMonth = 1; | |
334 base_st.wYear = 1970; | |
335 | |
336 FILETIME base_ft; | |
337 SystemTimeToFileTime(&base_st, &base_ft); | |
338 | |
339 ULARGE_INTEGER base_ul, current_ul; | |
340 memcpy(&base_ul, &base_ft, sizeof(FILETIME)); | |
341 memcpy(¤t_ul, &ft, sizeof(FILETIME)); | |
342 | |
343 // Divide by big number to convert to seconds, then subtract out the 1970 | |
344 // base date value. | |
345 const ULONGLONG RATIO = 10000000; | |
346 *ut = static_cast<time_t>((current_ul.QuadPart - base_ul.QuadPart) / RATIO); | |
347 } | |
348 | |
349 void UnixTimeToFileTime(const time_t& ut, FILETIME* ft) { | |
350 RTC_DCHECK(nullptr != ft); | |
351 | |
352 // FILETIME has an earlier date base than time_t (1/1/1970), so add in | |
353 // the difference. | |
354 SYSTEMTIME base_st; | |
355 memset(&base_st, 0, sizeof(base_st)); | |
356 base_st.wDay = 1; | |
357 base_st.wMonth = 1; | |
358 base_st.wYear = 1970; | |
359 | |
360 FILETIME base_ft; | |
361 SystemTimeToFileTime(&base_st, &base_ft); | |
362 | |
363 ULARGE_INTEGER base_ul; | |
364 memcpy(&base_ul, &base_ft, sizeof(FILETIME)); | |
365 | |
366 // Multiply by big number to convert to 100ns units, then add in the 1970 | |
367 // base date value. | |
368 const ULONGLONG RATIO = 10000000; | |
369 ULARGE_INTEGER current_ul; | |
370 current_ul.QuadPart = base_ul.QuadPart + static_cast<int64_t>(ut) * RATIO; | |
371 memcpy(ft, ¤t_ul, sizeof(FILETIME)); | |
372 } | |
373 | |
374 bool Utf8ToWindowsFilename(const std::string& utf8, std::wstring* filename) { | |
375 // TODO: Integrate into fileutils.h | |
376 // TODO: Handle wide and non-wide cases via TCHAR? | |
377 // TODO: Skip \\?\ processing if the length is not > MAX_PATH? | |
378 // TODO: Write unittests | |
379 | |
380 // Convert to Utf16 | |
381 int wlen = | |
382 ::MultiByteToWideChar(CP_UTF8, 0, utf8.c_str(), | |
383 static_cast<int>(utf8.length() + 1), nullptr, 0); | |
384 if (0 == wlen) { | |
385 return false; | |
386 } | |
387 wchar_t* wfilename = STACK_ARRAY(wchar_t, wlen); | |
388 if (0 == ::MultiByteToWideChar(CP_UTF8, 0, utf8.c_str(), | |
389 static_cast<int>(utf8.length() + 1), | |
390 wfilename, wlen)) { | |
391 return false; | |
392 } | |
393 // Replace forward slashes with backslashes | |
394 std::replace(wfilename, wfilename + wlen, L'/', L'\\'); | |
395 // Convert to complete filename | |
396 DWORD full_len = ::GetFullPathName(wfilename, 0, nullptr, nullptr); | |
397 if (0 == full_len) { | |
398 return false; | |
399 } | |
400 wchar_t* filepart = nullptr; | |
401 wchar_t* full_filename = STACK_ARRAY(wchar_t, full_len + 6); | |
402 wchar_t* start = full_filename + 6; | |
403 if (0 == ::GetFullPathName(wfilename, full_len, start, &filepart)) { | |
404 return false; | |
405 } | |
406 // Add long-path prefix | |
407 const wchar_t kLongPathPrefix[] = L"\\\\?\\UNC"; | |
408 if ((start[0] != L'\\') || (start[1] != L'\\')) { | |
409 // Non-unc path: <pathname> | |
410 // Becomes: \\?\<pathname> | |
411 start -= 4; | |
412 RTC_DCHECK(start >= full_filename); | |
413 memcpy(start, kLongPathPrefix, 4 * sizeof(wchar_t)); | |
414 } else if (start[2] != L'?') { | |
415 // Unc path: \\<server>\<pathname> | |
416 // Becomes: \\?\UNC\<server>\<pathname> | |
417 start -= 6; | |
418 RTC_DCHECK(start >= full_filename); | |
419 memcpy(start, kLongPathPrefix, 7 * sizeof(wchar_t)); | |
420 } else { | |
421 // Already in long-path form. | |
422 } | |
423 filename->assign(start); | |
424 return true; | |
425 } | |
426 | |
427 bool GetOsVersion(int* major, int* minor, int* build) { | |
428 OSVERSIONINFO info = {0}; | |
429 info.dwOSVersionInfoSize = sizeof(info); | |
430 if (GetVersionEx(&info)) { | |
431 if (major) *major = info.dwMajorVersion; | |
432 if (minor) *minor = info.dwMinorVersion; | |
433 if (build) *build = info.dwBuildNumber; | |
434 return true; | |
435 } | |
436 return false; | |
437 } | |
438 | |
439 bool GetCurrentProcessIntegrityLevel(int* level) { | |
440 bool ret = false; | |
441 HANDLE process = ::GetCurrentProcess(), token; | |
442 if (OpenProcessToken(process, TOKEN_QUERY | TOKEN_QUERY_SOURCE, &token)) { | |
443 DWORD size; | |
444 if (!GetTokenInformation(token, TokenIntegrityLevel, nullptr, 0, &size) && | |
445 GetLastError() == ERROR_INSUFFICIENT_BUFFER) { | |
446 char* buf = STACK_ARRAY(char, size); | |
447 TOKEN_MANDATORY_LABEL* til = | |
448 reinterpret_cast<TOKEN_MANDATORY_LABEL*>(buf); | |
449 if (GetTokenInformation(token, TokenIntegrityLevel, til, size, &size)) { | |
450 | |
451 DWORD count = *GetSidSubAuthorityCount(til->Label.Sid); | |
452 *level = *GetSidSubAuthority(til->Label.Sid, count - 1); | |
453 ret = true; | |
454 } | |
455 } | |
456 CloseHandle(token); | |
457 } | |
458 return ret; | |
459 } | |
460 | |
461 } // namespace rtc | |
OLD | NEW |