OLD | NEW |
1 /* | 1 /* |
2 * Copyright 2016 The WebRTC Project Authors. All rights reserved. | 2 * Copyright 2016 The WebRTC Project Authors. All rights reserved. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
9 */ | 9 */ |
10 | 10 |
11 #ifndef WEBRTC_BASE_WEAK_PTR_H_ | 11 #ifndef WEBRTC_BASE_WEAK_PTR_H_ |
12 #define WEBRTC_BASE_WEAK_PTR_H_ | 12 #define WEBRTC_BASE_WEAK_PTR_H_ |
13 | 13 |
14 #include <memory> | |
15 | 14 |
16 #include <utility> | 15 // This header is deprecated and is just left here temporarily during |
17 | 16 // refactoring. See https://bugs.webrtc.org/7634 for more details. |
18 #include "webrtc/base/refcount.h" | 17 #include "webrtc/rtc_base/weak_ptr.h" |
19 #include "webrtc/base/scoped_ref_ptr.h" | |
20 #include "webrtc/base/sequenced_task_checker.h" | |
21 | |
22 // The implementation is borrowed from chromium except that it does not | |
23 // implement SupportsWeakPtr. | |
24 | |
25 // Weak pointers are pointers to an object that do not affect its lifetime, | |
26 // and which may be invalidated (i.e. reset to nullptr) by the object, or its | |
27 // owner, at any time, most commonly when the object is about to be deleted. | |
28 | |
29 // Weak pointers are useful when an object needs to be accessed safely by one | |
30 // or more objects other than its owner, and those callers can cope with the | |
31 // object vanishing and e.g. tasks posted to it being silently dropped. | |
32 // Reference-counting such an object would complicate the ownership graph and | |
33 // make it harder to reason about the object's lifetime. | |
34 | |
35 // EXAMPLE: | |
36 // | |
37 // class Controller { | |
38 // public: | |
39 // Controller() : weak_factory_(this) {} | |
40 // void SpawnWorker() { Worker::StartNew(weak_factory_.GetWeakPtr()); } | |
41 // void WorkComplete(const Result& result) { ... } | |
42 // private: | |
43 // // Member variables should appear before the WeakPtrFactory, to ensure | |
44 // // that any WeakPtrs to Controller are invalidated before its members | |
45 // // variable's destructors are executed, rendering them invalid. | |
46 // WeakPtrFactory<Controller> weak_factory_; | |
47 // }; | |
48 // | |
49 // class Worker { | |
50 // public: | |
51 // static void StartNew(const WeakPtr<Controller>& controller) { | |
52 // Worker* worker = new Worker(controller); | |
53 // // Kick off asynchronous processing... | |
54 // } | |
55 // private: | |
56 // Worker(const WeakPtr<Controller>& controller) | |
57 // : controller_(controller) {} | |
58 // void DidCompleteAsynchronousProcessing(const Result& result) { | |
59 // if (controller_) | |
60 // controller_->WorkComplete(result); | |
61 // } | |
62 // WeakPtr<Controller> controller_; | |
63 // }; | |
64 // | |
65 // With this implementation a caller may use SpawnWorker() to dispatch multiple | |
66 // Workers and subsequently delete the Controller, without waiting for all | |
67 // Workers to have completed. | |
68 | |
69 // ------------------------- IMPORTANT: Thread-safety ------------------------- | |
70 | |
71 // Weak pointers may be passed safely between threads, but must always be | |
72 // dereferenced and invalidated on the same TaskQueue or thread, otherwise | |
73 // checking the pointer would be racey. | |
74 // | |
75 // To ensure correct use, the first time a WeakPtr issued by a WeakPtrFactory | |
76 // is dereferenced, the factory and its WeakPtrs become bound to the calling | |
77 // TaskQueue/thread, and cannot be dereferenced or | |
78 // invalidated on any other TaskQueue/thread. Bound WeakPtrs can still be handed | |
79 // off to other TaskQueues, e.g. to use to post tasks back to object on the | |
80 // bound sequence. | |
81 // | |
82 // Thus, at least one WeakPtr object must exist and have been dereferenced on | |
83 // the correct thread to enforce that other WeakPtr objects will enforce they | |
84 // are used on the desired thread. | |
85 | |
86 namespace rtc { | |
87 | |
88 namespace internal { | |
89 | |
90 class WeakReference { | |
91 public: | |
92 // Although Flag is bound to a specific sequence, it may be | |
93 // deleted from another via base::WeakPtr::~WeakPtr(). | |
94 class Flag : public RefCountInterface { | |
95 public: | |
96 Flag(); | |
97 | |
98 void Invalidate(); | |
99 bool IsValid() const; | |
100 | |
101 private: | |
102 friend class RefCountedObject<Flag>; | |
103 | |
104 ~Flag() override; | |
105 | |
106 SequencedTaskChecker checker_; | |
107 bool is_valid_; | |
108 }; | |
109 | |
110 WeakReference(); | |
111 explicit WeakReference(const Flag* flag); | |
112 ~WeakReference(); | |
113 | |
114 WeakReference(WeakReference&& other); | |
115 WeakReference(const WeakReference& other); | |
116 WeakReference& operator=(WeakReference&& other) = default; | |
117 WeakReference& operator=(const WeakReference& other) = default; | |
118 | |
119 bool is_valid() const; | |
120 | |
121 private: | |
122 scoped_refptr<const Flag> flag_; | |
123 }; | |
124 | |
125 class WeakReferenceOwner { | |
126 public: | |
127 WeakReferenceOwner(); | |
128 ~WeakReferenceOwner(); | |
129 | |
130 WeakReference GetRef() const; | |
131 | |
132 bool HasRefs() const { return flag_.get() && !flag_->HasOneRef(); } | |
133 | |
134 void Invalidate(); | |
135 | |
136 private: | |
137 SequencedTaskChecker checker_; | |
138 mutable scoped_refptr<RefCountedObject<WeakReference::Flag>> flag_; | |
139 }; | |
140 | |
141 // This class simplifies the implementation of WeakPtr's type conversion | |
142 // constructor by avoiding the need for a public accessor for ref_. A | |
143 // WeakPtr<T> cannot access the private members of WeakPtr<U>, so this | |
144 // base class gives us a way to access ref_ in a protected fashion. | |
145 class WeakPtrBase { | |
146 public: | |
147 WeakPtrBase(); | |
148 ~WeakPtrBase(); | |
149 | |
150 WeakPtrBase(const WeakPtrBase& other) = default; | |
151 WeakPtrBase(WeakPtrBase&& other) = default; | |
152 WeakPtrBase& operator=(const WeakPtrBase& other) = default; | |
153 WeakPtrBase& operator=(WeakPtrBase&& other) = default; | |
154 | |
155 protected: | |
156 explicit WeakPtrBase(const WeakReference& ref); | |
157 | |
158 WeakReference ref_; | |
159 }; | |
160 | |
161 } // namespace internal | |
162 | |
163 template <typename T> | |
164 class WeakPtrFactory; | |
165 | |
166 template <typename T> | |
167 class WeakPtr : public internal::WeakPtrBase { | |
168 public: | |
169 WeakPtr() : ptr_(nullptr) {} | |
170 | |
171 // Allow conversion from U to T provided U "is a" T. Note that this | |
172 // is separate from the (implicit) copy and move constructors. | |
173 template <typename U> | |
174 WeakPtr(const WeakPtr<U>& other) | |
175 : internal::WeakPtrBase(other), ptr_(other.ptr_) {} | |
176 template <typename U> | |
177 WeakPtr(WeakPtr<U>&& other) | |
178 : internal::WeakPtrBase(std::move(other)), ptr_(other.ptr_) {} | |
179 | |
180 T* get() const { return ref_.is_valid() ? ptr_ : nullptr; } | |
181 | |
182 T& operator*() const { | |
183 RTC_DCHECK(get() != nullptr); | |
184 return *get(); | |
185 } | |
186 T* operator->() const { | |
187 RTC_DCHECK(get() != nullptr); | |
188 return get(); | |
189 } | |
190 | |
191 void reset() { | |
192 ref_ = internal::WeakReference(); | |
193 ptr_ = nullptr; | |
194 } | |
195 | |
196 // Allow conditionals to test validity, e.g. if (weak_ptr) {...}; | |
197 explicit operator bool() const { return get() != nullptr; } | |
198 | |
199 private: | |
200 template <typename U> | |
201 friend class WeakPtr; | |
202 friend class WeakPtrFactory<T>; | |
203 | |
204 WeakPtr(const internal::WeakReference& ref, T* ptr) | |
205 : internal::WeakPtrBase(ref), ptr_(ptr) {} | |
206 | |
207 // This pointer is only valid when ref_.is_valid() is true. Otherwise, its | |
208 // value is undefined (as opposed to nullptr). | |
209 T* ptr_; | |
210 }; | |
211 | |
212 // Allow callers to compare WeakPtrs against nullptr to test validity. | |
213 template <class T> | |
214 bool operator!=(const WeakPtr<T>& weak_ptr, std::nullptr_t) { | |
215 return !(weak_ptr == nullptr); | |
216 } | |
217 template <class T> | |
218 bool operator!=(std::nullptr_t, const WeakPtr<T>& weak_ptr) { | |
219 return weak_ptr != nullptr; | |
220 } | |
221 template <class T> | |
222 bool operator==(const WeakPtr<T>& weak_ptr, std::nullptr_t) { | |
223 return weak_ptr.get() == nullptr; | |
224 } | |
225 template <class T> | |
226 bool operator==(std::nullptr_t, const WeakPtr<T>& weak_ptr) { | |
227 return weak_ptr == nullptr; | |
228 } | |
229 | |
230 // A class may be composed of a WeakPtrFactory and thereby | |
231 // control how it exposes weak pointers to itself. This is helpful if you only | |
232 // need weak pointers within the implementation of a class. This class is also | |
233 // useful when working with primitive types. For example, you could have a | |
234 // WeakPtrFactory<bool> that is used to pass around a weak reference to a bool. | |
235 | |
236 // Note that GetWeakPtr must be called on one and only one TaskQueue or thread | |
237 // and the WeakPtr must only be dereferenced and invalidated on that same | |
238 // TaskQueue/thread. A WeakPtr instance can be copied and posted to other | |
239 // sequences though as long as it is not dereferenced (WeakPtr<T>::get()). | |
240 template <class T> | |
241 class WeakPtrFactory { | |
242 public: | |
243 explicit WeakPtrFactory(T* ptr) : ptr_(ptr) {} | |
244 | |
245 ~WeakPtrFactory() { ptr_ = nullptr; } | |
246 | |
247 WeakPtr<T> GetWeakPtr() { | |
248 RTC_DCHECK(ptr_); | |
249 return WeakPtr<T>(weak_reference_owner_.GetRef(), ptr_); | |
250 } | |
251 | |
252 // Call this method to invalidate all existing weak pointers. | |
253 void InvalidateWeakPtrs() { | |
254 RTC_DCHECK(ptr_); | |
255 weak_reference_owner_.Invalidate(); | |
256 } | |
257 | |
258 // Call this method to determine if any weak pointers exist. | |
259 bool HasWeakPtrs() const { | |
260 RTC_DCHECK(ptr_); | |
261 return weak_reference_owner_.HasRefs(); | |
262 } | |
263 | |
264 private: | |
265 internal::WeakReferenceOwner weak_reference_owner_; | |
266 T* ptr_; | |
267 RTC_DISALLOW_IMPLICIT_CONSTRUCTORS(WeakPtrFactory); | |
268 }; | |
269 | |
270 } // namespace rtc | |
271 | 18 |
272 #endif // WEBRTC_BASE_WEAK_PTR_H_ | 19 #endif // WEBRTC_BASE_WEAK_PTR_H_ |
OLD | NEW |