Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(333)

Side by Side Diff: webrtc/base/virtualsocketserver.cc

Issue 2877023002: Move webrtc/{base => rtc_base} (Closed)
Patch Set: update presubmit.py and DEPS include rules Created 3 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « webrtc/base/virtualsocketserver.h ('k') | webrtc/base/weak_ptr.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 /*
2 * Copyright 2004 The WebRTC Project Authors. All rights reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "webrtc/base/virtualsocketserver.h"
12
13 #include <errno.h>
14 #include <math.h>
15
16 #include <algorithm>
17 #include <map>
18 #include <memory>
19 #include <vector>
20
21 #include "webrtc/base/checks.h"
22 #include "webrtc/base/fakeclock.h"
23 #include "webrtc/base/logging.h"
24 #include "webrtc/base/physicalsocketserver.h"
25 #include "webrtc/base/socketaddresspair.h"
26 #include "webrtc/base/thread.h"
27 #include "webrtc/base/timeutils.h"
28
29 namespace rtc {
30 #if defined(WEBRTC_WIN)
31 const in_addr kInitialNextIPv4 = { { { 0x01, 0, 0, 0 } } };
32 #else
33 // This value is entirely arbitrary, hence the lack of concern about endianness.
34 const in_addr kInitialNextIPv4 = { 0x01000000 };
35 #endif
36 // Starts at ::2 so as to not cause confusion with ::1.
37 const in6_addr kInitialNextIPv6 = { { {
38 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2
39 } } };
40
41 const uint16_t kFirstEphemeralPort = 49152;
42 const uint16_t kLastEphemeralPort = 65535;
43 const uint16_t kEphemeralPortCount =
44 kLastEphemeralPort - kFirstEphemeralPort + 1;
45 const uint32_t kDefaultNetworkCapacity = 64 * 1024;
46 const uint32_t kDefaultTcpBufferSize = 32 * 1024;
47
48 const uint32_t UDP_HEADER_SIZE = 28; // IP + UDP headers
49 const uint32_t TCP_HEADER_SIZE = 40; // IP + TCP headers
50 const uint32_t TCP_MSS = 1400; // Maximum segment size
51
52 // Note: The current algorithm doesn't work for sample sizes smaller than this.
53 const int NUM_SAMPLES = 1000;
54
55 enum {
56 MSG_ID_PACKET,
57 MSG_ID_ADDRESS_BOUND,
58 MSG_ID_CONNECT,
59 MSG_ID_DISCONNECT,
60 MSG_ID_SIGNALREADEVENT,
61 };
62
63 // Packets are passed between sockets as messages. We copy the data just like
64 // the kernel does.
65 class Packet : public MessageData {
66 public:
67 Packet(const char* data, size_t size, const SocketAddress& from)
68 : size_(size), consumed_(0), from_(from) {
69 RTC_DCHECK(nullptr != data);
70 data_ = new char[size_];
71 memcpy(data_, data, size_);
72 }
73
74 ~Packet() override {
75 delete[] data_;
76 }
77
78 const char* data() const { return data_ + consumed_; }
79 size_t size() const { return size_ - consumed_; }
80 const SocketAddress& from() const { return from_; }
81
82 // Remove the first size bytes from the data.
83 void Consume(size_t size) {
84 RTC_DCHECK(size + consumed_ < size_);
85 consumed_ += size;
86 }
87
88 private:
89 char* data_;
90 size_t size_, consumed_;
91 SocketAddress from_;
92 };
93
94 struct MessageAddress : public MessageData {
95 explicit MessageAddress(const SocketAddress& a) : addr(a) { }
96 SocketAddress addr;
97 };
98
99 VirtualSocket::VirtualSocket(VirtualSocketServer* server,
100 int family,
101 int type,
102 bool async)
103 : server_(server),
104 type_(type),
105 async_(async),
106 state_(CS_CLOSED),
107 error_(0),
108 listen_queue_(nullptr),
109 network_size_(0),
110 recv_buffer_size_(0),
111 bound_(false),
112 was_any_(false) {
113 RTC_DCHECK((type_ == SOCK_DGRAM) || (type_ == SOCK_STREAM));
114 RTC_DCHECK(async_ ||
115 (type_ != SOCK_STREAM)); // We only support async streams
116 server->SignalReadyToSend.connect(this,
117 &VirtualSocket::OnSocketServerReadyToSend);
118 }
119
120 VirtualSocket::~VirtualSocket() {
121 Close();
122
123 for (RecvBuffer::iterator it = recv_buffer_.begin(); it != recv_buffer_.end();
124 ++it) {
125 delete *it;
126 }
127 }
128
129 SocketAddress VirtualSocket::GetLocalAddress() const {
130 if (!alternative_local_addr_.IsNil())
131 return alternative_local_addr_;
132 return local_addr_;
133 }
134
135 SocketAddress VirtualSocket::GetRemoteAddress() const {
136 return remote_addr_;
137 }
138
139 void VirtualSocket::SetLocalAddress(const SocketAddress& addr) {
140 local_addr_ = addr;
141 }
142
143 void VirtualSocket::SetAlternativeLocalAddress(const SocketAddress& addr) {
144 alternative_local_addr_ = addr;
145 }
146
147 int VirtualSocket::Bind(const SocketAddress& addr) {
148 if (!local_addr_.IsNil()) {
149 error_ = EINVAL;
150 return -1;
151 }
152 local_addr_ = addr;
153 int result = server_->Bind(this, &local_addr_);
154 if (result != 0) {
155 local_addr_.Clear();
156 error_ = EADDRINUSE;
157 } else {
158 bound_ = true;
159 was_any_ = addr.IsAnyIP();
160 // Post a message here such that test case could have chance to
161 // process the local address. (i.e. SetAlternativeLocalAddress).
162 server_->msg_queue_->Post(RTC_FROM_HERE, this, MSG_ID_ADDRESS_BOUND);
163 }
164 return result;
165 }
166
167 int VirtualSocket::Connect(const SocketAddress& addr) {
168 return InitiateConnect(addr, true);
169 }
170
171 int VirtualSocket::Close() {
172 if (!local_addr_.IsNil() && bound_) {
173 // Remove from the binding table.
174 server_->Unbind(local_addr_, this);
175 bound_ = false;
176 }
177
178 if (SOCK_STREAM == type_) {
179 // Cancel pending sockets
180 if (listen_queue_) {
181 while (!listen_queue_->empty()) {
182 SocketAddress addr = listen_queue_->front();
183
184 // Disconnect listening socket.
185 server_->Disconnect(server_->LookupBinding(addr));
186 listen_queue_->pop_front();
187 }
188 delete listen_queue_;
189 listen_queue_ = nullptr;
190 }
191 // Disconnect stream sockets
192 if (CS_CONNECTED == state_) {
193 // Disconnect remote socket, check if it is a child of a server socket.
194 VirtualSocket* socket =
195 server_->LookupConnection(local_addr_, remote_addr_);
196 if (!socket) {
197 // Not a server socket child, then see if it is bound.
198 // TODO(tbd): If this is indeed a server socket that has no
199 // children this will cause the server socket to be
200 // closed. This might lead to unexpected results, how to fix this?
201 socket = server_->LookupBinding(remote_addr_);
202 }
203 server_->Disconnect(socket);
204
205 // Remove mapping for both directions.
206 server_->RemoveConnection(remote_addr_, local_addr_);
207 server_->RemoveConnection(local_addr_, remote_addr_);
208 }
209 // Cancel potential connects
210 MessageList msgs;
211 if (server_->msg_queue_) {
212 server_->msg_queue_->Clear(this, MSG_ID_CONNECT, &msgs);
213 }
214 for (MessageList::iterator it = msgs.begin(); it != msgs.end(); ++it) {
215 RTC_DCHECK(nullptr != it->pdata);
216 MessageAddress* data = static_cast<MessageAddress*>(it->pdata);
217
218 // Lookup remote side.
219 VirtualSocket* socket =
220 server_->LookupConnection(local_addr_, data->addr);
221 if (socket) {
222 // Server socket, remote side is a socket retreived by
223 // accept. Accepted sockets are not bound so we will not
224 // find it by looking in the bindings table.
225 server_->Disconnect(socket);
226 server_->RemoveConnection(local_addr_, data->addr);
227 } else {
228 server_->Disconnect(server_->LookupBinding(data->addr));
229 }
230 delete data;
231 }
232 // Clear incoming packets and disconnect messages
233 if (server_->msg_queue_) {
234 server_->msg_queue_->Clear(this);
235 }
236 }
237
238 state_ = CS_CLOSED;
239 local_addr_.Clear();
240 remote_addr_.Clear();
241 return 0;
242 }
243
244 int VirtualSocket::Send(const void* pv, size_t cb) {
245 if (CS_CONNECTED != state_) {
246 error_ = ENOTCONN;
247 return -1;
248 }
249 if (SOCK_DGRAM == type_) {
250 return SendUdp(pv, cb, remote_addr_);
251 } else {
252 return SendTcp(pv, cb);
253 }
254 }
255
256 int VirtualSocket::SendTo(const void* pv,
257 size_t cb,
258 const SocketAddress& addr) {
259 if (SOCK_DGRAM == type_) {
260 return SendUdp(pv, cb, addr);
261 } else {
262 if (CS_CONNECTED != state_) {
263 error_ = ENOTCONN;
264 return -1;
265 }
266 return SendTcp(pv, cb);
267 }
268 }
269
270 int VirtualSocket::Recv(void* pv, size_t cb, int64_t* timestamp) {
271 SocketAddress addr;
272 return RecvFrom(pv, cb, &addr, timestamp);
273 }
274
275 int VirtualSocket::RecvFrom(void* pv,
276 size_t cb,
277 SocketAddress* paddr,
278 int64_t* timestamp) {
279 if (timestamp) {
280 *timestamp = -1;
281 }
282 // If we don't have a packet, then either error or wait for one to arrive.
283 if (recv_buffer_.empty()) {
284 if (async_) {
285 error_ = EAGAIN;
286 return -1;
287 }
288 while (recv_buffer_.empty()) {
289 Message msg;
290 server_->msg_queue_->Get(&msg);
291 server_->msg_queue_->Dispatch(&msg);
292 }
293 }
294
295 // Return the packet at the front of the queue.
296 Packet* packet = recv_buffer_.front();
297 size_t data_read = std::min(cb, packet->size());
298 memcpy(pv, packet->data(), data_read);
299 *paddr = packet->from();
300
301 if (data_read < packet->size()) {
302 packet->Consume(data_read);
303 } else {
304 recv_buffer_.pop_front();
305 delete packet;
306 }
307
308 // To behave like a real socket, SignalReadEvent should fire in the next
309 // message loop pass if there's still data buffered.
310 if (!recv_buffer_.empty()) {
311 // Clear the message so it doesn't end up posted multiple times.
312 server_->msg_queue_->Clear(this, MSG_ID_SIGNALREADEVENT);
313 server_->msg_queue_->Post(RTC_FROM_HERE, this, MSG_ID_SIGNALREADEVENT);
314 }
315
316 if (SOCK_STREAM == type_) {
317 bool was_full = (recv_buffer_size_ == server_->recv_buffer_capacity_);
318 recv_buffer_size_ -= data_read;
319 if (was_full) {
320 VirtualSocket* sender = server_->LookupBinding(remote_addr_);
321 RTC_DCHECK(nullptr != sender);
322 server_->SendTcp(sender);
323 }
324 }
325
326 return static_cast<int>(data_read);
327 }
328
329 int VirtualSocket::Listen(int backlog) {
330 RTC_DCHECK(SOCK_STREAM == type_);
331 RTC_DCHECK(CS_CLOSED == state_);
332 if (local_addr_.IsNil()) {
333 error_ = EINVAL;
334 return -1;
335 }
336 RTC_DCHECK(nullptr == listen_queue_);
337 listen_queue_ = new ListenQueue;
338 state_ = CS_CONNECTING;
339 return 0;
340 }
341
342 VirtualSocket* VirtualSocket::Accept(SocketAddress* paddr) {
343 if (nullptr == listen_queue_) {
344 error_ = EINVAL;
345 return nullptr;
346 }
347 while (!listen_queue_->empty()) {
348 VirtualSocket* socket = new VirtualSocket(server_, AF_INET, type_, async_);
349
350 // Set the new local address to the same as this server socket.
351 socket->SetLocalAddress(local_addr_);
352 // Sockets made from a socket that 'was Any' need to inherit that.
353 socket->set_was_any(was_any_);
354 SocketAddress remote_addr(listen_queue_->front());
355 int result = socket->InitiateConnect(remote_addr, false);
356 listen_queue_->pop_front();
357 if (result != 0) {
358 delete socket;
359 continue;
360 }
361 socket->CompleteConnect(remote_addr, false);
362 if (paddr) {
363 *paddr = remote_addr;
364 }
365 return socket;
366 }
367 error_ = EWOULDBLOCK;
368 return nullptr;
369 }
370
371 int VirtualSocket::GetError() const {
372 return error_;
373 }
374
375 void VirtualSocket::SetError(int error) {
376 error_ = error;
377 }
378
379 Socket::ConnState VirtualSocket::GetState() const {
380 return state_;
381 }
382
383 int VirtualSocket::GetOption(Option opt, int* value) {
384 OptionsMap::const_iterator it = options_map_.find(opt);
385 if (it == options_map_.end()) {
386 return -1;
387 }
388 *value = it->second;
389 return 0; // 0 is success to emulate getsockopt()
390 }
391
392 int VirtualSocket::SetOption(Option opt, int value) {
393 options_map_[opt] = value;
394 return 0; // 0 is success to emulate setsockopt()
395 }
396
397 void VirtualSocket::OnMessage(Message* pmsg) {
398 if (pmsg->message_id == MSG_ID_PACKET) {
399 RTC_DCHECK(nullptr != pmsg->pdata);
400 Packet* packet = static_cast<Packet*>(pmsg->pdata);
401
402 recv_buffer_.push_back(packet);
403
404 if (async_) {
405 SignalReadEvent(this);
406 }
407 } else if (pmsg->message_id == MSG_ID_CONNECT) {
408 RTC_DCHECK(nullptr != pmsg->pdata);
409 MessageAddress* data = static_cast<MessageAddress*>(pmsg->pdata);
410 if (listen_queue_ != nullptr) {
411 listen_queue_->push_back(data->addr);
412 if (async_) {
413 SignalReadEvent(this);
414 }
415 } else if ((SOCK_STREAM == type_) && (CS_CONNECTING == state_)) {
416 CompleteConnect(data->addr, true);
417 } else {
418 LOG(LS_VERBOSE) << "Socket at " << local_addr_ << " is not listening";
419 server_->Disconnect(server_->LookupBinding(data->addr));
420 }
421 delete data;
422 } else if (pmsg->message_id == MSG_ID_DISCONNECT) {
423 RTC_DCHECK(SOCK_STREAM == type_);
424 if (CS_CLOSED != state_) {
425 int error = (CS_CONNECTING == state_) ? ECONNREFUSED : 0;
426 state_ = CS_CLOSED;
427 remote_addr_.Clear();
428 if (async_) {
429 SignalCloseEvent(this, error);
430 }
431 }
432 } else if (pmsg->message_id == MSG_ID_ADDRESS_BOUND) {
433 SignalAddressReady(this, GetLocalAddress());
434 } else if (pmsg->message_id == MSG_ID_SIGNALREADEVENT) {
435 if (!recv_buffer_.empty()) {
436 SignalReadEvent(this);
437 }
438 } else {
439 RTC_NOTREACHED();
440 }
441 }
442
443 int VirtualSocket::InitiateConnect(const SocketAddress& addr, bool use_delay) {
444 if (!remote_addr_.IsNil()) {
445 error_ = (CS_CONNECTED == state_) ? EISCONN : EINPROGRESS;
446 return -1;
447 }
448 if (local_addr_.IsNil()) {
449 // If there's no local address set, grab a random one in the correct AF.
450 int result = 0;
451 if (addr.ipaddr().family() == AF_INET) {
452 result = Bind(SocketAddress("0.0.0.0", 0));
453 } else if (addr.ipaddr().family() == AF_INET6) {
454 result = Bind(SocketAddress("::", 0));
455 }
456 if (result != 0) {
457 return result;
458 }
459 }
460 if (type_ == SOCK_DGRAM) {
461 remote_addr_ = addr;
462 state_ = CS_CONNECTED;
463 } else {
464 int result = server_->Connect(this, addr, use_delay);
465 if (result != 0) {
466 error_ = EHOSTUNREACH;
467 return -1;
468 }
469 state_ = CS_CONNECTING;
470 }
471 return 0;
472 }
473
474 void VirtualSocket::CompleteConnect(const SocketAddress& addr, bool notify) {
475 RTC_DCHECK(CS_CONNECTING == state_);
476 remote_addr_ = addr;
477 state_ = CS_CONNECTED;
478 server_->AddConnection(remote_addr_, local_addr_, this);
479 if (async_ && notify) {
480 SignalConnectEvent(this);
481 }
482 }
483
484 int VirtualSocket::SendUdp(const void* pv,
485 size_t cb,
486 const SocketAddress& addr) {
487 // If we have not been assigned a local port, then get one.
488 if (local_addr_.IsNil()) {
489 local_addr_ = EmptySocketAddressWithFamily(addr.ipaddr().family());
490 int result = server_->Bind(this, &local_addr_);
491 if (result != 0) {
492 local_addr_.Clear();
493 error_ = EADDRINUSE;
494 return result;
495 }
496 }
497
498 // Send the data in a message to the appropriate socket.
499 return server_->SendUdp(this, static_cast<const char*>(pv), cb, addr);
500 }
501
502 int VirtualSocket::SendTcp(const void* pv, size_t cb) {
503 size_t capacity = server_->send_buffer_capacity_ - send_buffer_.size();
504 if (0 == capacity) {
505 ready_to_send_ = false;
506 error_ = EWOULDBLOCK;
507 return -1;
508 }
509 size_t consumed = std::min(cb, capacity);
510 const char* cpv = static_cast<const char*>(pv);
511 send_buffer_.insert(send_buffer_.end(), cpv, cpv + consumed);
512 server_->SendTcp(this);
513 return static_cast<int>(consumed);
514 }
515
516 void VirtualSocket::OnSocketServerReadyToSend() {
517 if (ready_to_send_) {
518 // This socket didn't encounter EWOULDBLOCK, so there's nothing to do.
519 return;
520 }
521 if (type_ == SOCK_DGRAM) {
522 ready_to_send_ = true;
523 SignalWriteEvent(this);
524 } else {
525 RTC_DCHECK(type_ == SOCK_STREAM);
526 // This will attempt to empty the full send buffer, and will fire
527 // SignalWriteEvent if successful.
528 server_->SendTcp(this);
529 }
530 }
531
532 VirtualSocketServer::VirtualSocketServer() : VirtualSocketServer(nullptr) {}
533
534 VirtualSocketServer::VirtualSocketServer(FakeClock* fake_clock)
535 : fake_clock_(fake_clock),
536 wakeup_(/*manual_reset=*/false, /*initially_signaled=*/false),
537 msg_queue_(nullptr),
538 stop_on_idle_(false),
539 next_ipv4_(kInitialNextIPv4),
540 next_ipv6_(kInitialNextIPv6),
541 next_port_(kFirstEphemeralPort),
542 bindings_(new AddressMap()),
543 connections_(new ConnectionMap()),
544 bandwidth_(0),
545 network_capacity_(kDefaultNetworkCapacity),
546 send_buffer_capacity_(kDefaultTcpBufferSize),
547 recv_buffer_capacity_(kDefaultTcpBufferSize),
548 delay_mean_(0),
549 delay_stddev_(0),
550 delay_samples_(NUM_SAMPLES),
551 drop_prob_(0.0) {
552 UpdateDelayDistribution();
553 }
554
555 VirtualSocketServer::~VirtualSocketServer() {
556 delete bindings_;
557 delete connections_;
558 }
559
560 IPAddress VirtualSocketServer::GetNextIP(int family) {
561 if (family == AF_INET) {
562 IPAddress next_ip(next_ipv4_);
563 next_ipv4_.s_addr =
564 HostToNetwork32(NetworkToHost32(next_ipv4_.s_addr) + 1);
565 return next_ip;
566 } else if (family == AF_INET6) {
567 IPAddress next_ip(next_ipv6_);
568 uint32_t* as_ints = reinterpret_cast<uint32_t*>(&next_ipv6_.s6_addr);
569 as_ints[3] += 1;
570 return next_ip;
571 }
572 return IPAddress();
573 }
574
575 uint16_t VirtualSocketServer::GetNextPort() {
576 uint16_t port = next_port_;
577 if (next_port_ < kLastEphemeralPort) {
578 ++next_port_;
579 } else {
580 next_port_ = kFirstEphemeralPort;
581 }
582 return port;
583 }
584
585 void VirtualSocketServer::SetSendingBlocked(bool blocked) {
586 if (blocked == sending_blocked_) {
587 // Unchanged; nothing to do.
588 return;
589 }
590 sending_blocked_ = blocked;
591 if (!sending_blocked_) {
592 // Sending was blocked, but is now unblocked. This signal gives sockets a
593 // chance to fire SignalWriteEvent, and for TCP, send buffered data.
594 SignalReadyToSend();
595 }
596 }
597
598 Socket* VirtualSocketServer::CreateSocket(int type) {
599 return CreateSocket(AF_INET, type);
600 }
601
602 Socket* VirtualSocketServer::CreateSocket(int family, int type) {
603 return CreateSocketInternal(family, type);
604 }
605
606 AsyncSocket* VirtualSocketServer::CreateAsyncSocket(int type) {
607 return CreateAsyncSocket(AF_INET, type);
608 }
609
610 AsyncSocket* VirtualSocketServer::CreateAsyncSocket(int family, int type) {
611 return CreateSocketInternal(family, type);
612 }
613
614 VirtualSocket* VirtualSocketServer::CreateSocketInternal(int family, int type) {
615 VirtualSocket* socket = new VirtualSocket(this, family, type, true);
616 SignalSocketCreated(socket);
617 return socket;
618 }
619
620 void VirtualSocketServer::SetMessageQueue(MessageQueue* msg_queue) {
621 msg_queue_ = msg_queue;
622 if (msg_queue_) {
623 msg_queue_->SignalQueueDestroyed.connect(this,
624 &VirtualSocketServer::OnMessageQueueDestroyed);
625 }
626 }
627
628 bool VirtualSocketServer::Wait(int cmsWait, bool process_io) {
629 RTC_DCHECK(msg_queue_ == Thread::Current());
630 if (stop_on_idle_ && Thread::Current()->empty()) {
631 return false;
632 }
633 // Note: we don't need to do anything with |process_io| since we don't have
634 // any real I/O. Received packets come in the form of queued messages, so
635 // MessageQueue will ensure WakeUp is called if another thread sends a
636 // packet.
637 wakeup_.Wait(cmsWait);
638 return true;
639 }
640
641 void VirtualSocketServer::WakeUp() {
642 wakeup_.Set();
643 }
644
645 bool VirtualSocketServer::ProcessMessagesUntilIdle() {
646 RTC_DCHECK(msg_queue_ == Thread::Current());
647 stop_on_idle_ = true;
648 while (!msg_queue_->empty()) {
649 if (fake_clock_) {
650 // If using a fake clock, advance it in millisecond increments until the
651 // queue is empty.
652 fake_clock_->AdvanceTime(rtc::TimeDelta::FromMilliseconds(1));
653 } else {
654 // Otherwise, run a normal message loop.
655 Message msg;
656 if (msg_queue_->Get(&msg, Thread::kForever)) {
657 msg_queue_->Dispatch(&msg);
658 }
659 }
660 }
661 stop_on_idle_ = false;
662 return !msg_queue_->IsQuitting();
663 }
664
665 void VirtualSocketServer::SetNextPortForTesting(uint16_t port) {
666 next_port_ = port;
667 }
668
669 bool VirtualSocketServer::CloseTcpConnections(
670 const SocketAddress& addr_local,
671 const SocketAddress& addr_remote) {
672 VirtualSocket* socket = LookupConnection(addr_local, addr_remote);
673 if (!socket) {
674 return false;
675 }
676 // Signal the close event on the local connection first.
677 socket->SignalCloseEvent(socket, 0);
678
679 // Trigger the remote connection's close event.
680 socket->Close();
681
682 return true;
683 }
684
685 int VirtualSocketServer::Bind(VirtualSocket* socket,
686 const SocketAddress& addr) {
687 RTC_DCHECK(nullptr != socket);
688 // Address must be completely specified at this point
689 RTC_DCHECK(!IPIsUnspec(addr.ipaddr()));
690 RTC_DCHECK(addr.port() != 0);
691
692 // Normalize the address (turns v6-mapped addresses into v4-addresses).
693 SocketAddress normalized(addr.ipaddr().Normalized(), addr.port());
694
695 AddressMap::value_type entry(normalized, socket);
696 return bindings_->insert(entry).second ? 0 : -1;
697 }
698
699 int VirtualSocketServer::Bind(VirtualSocket* socket, SocketAddress* addr) {
700 RTC_DCHECK(nullptr != socket);
701
702 if (!IPIsUnspec(addr->ipaddr())) {
703 addr->SetIP(addr->ipaddr().Normalized());
704 } else {
705 RTC_NOTREACHED();
706 }
707
708 if (addr->port() == 0) {
709 for (int i = 0; i < kEphemeralPortCount; ++i) {
710 addr->SetPort(GetNextPort());
711 if (bindings_->find(*addr) == bindings_->end()) {
712 break;
713 }
714 }
715 }
716
717 return Bind(socket, *addr);
718 }
719
720 VirtualSocket* VirtualSocketServer::LookupBinding(const SocketAddress& addr) {
721 SocketAddress normalized(addr.ipaddr().Normalized(),
722 addr.port());
723 AddressMap::iterator it = bindings_->find(normalized);
724 if (it != bindings_->end()) {
725 return it->second;
726 }
727
728 IPAddress default_ip = GetDefaultRoute(addr.ipaddr().family());
729 if (!IPIsUnspec(default_ip) && addr.ipaddr() == default_ip) {
730 // If we can't find a binding for the packet which is sent to the interface
731 // corresponding to the default route, it should match a binding with the
732 // correct port to the any address.
733 SocketAddress sock_addr =
734 EmptySocketAddressWithFamily(addr.ipaddr().family());
735 sock_addr.SetPort(addr.port());
736 return LookupBinding(sock_addr);
737 }
738
739 return nullptr;
740 }
741
742 int VirtualSocketServer::Unbind(const SocketAddress& addr,
743 VirtualSocket* socket) {
744 SocketAddress normalized(addr.ipaddr().Normalized(),
745 addr.port());
746 RTC_DCHECK((*bindings_)[normalized] == socket);
747 bindings_->erase(bindings_->find(normalized));
748 return 0;
749 }
750
751 void VirtualSocketServer::AddConnection(const SocketAddress& local,
752 const SocketAddress& remote,
753 VirtualSocket* remote_socket) {
754 // Add this socket pair to our routing table. This will allow
755 // multiple clients to connect to the same server address.
756 SocketAddress local_normalized(local.ipaddr().Normalized(),
757 local.port());
758 SocketAddress remote_normalized(remote.ipaddr().Normalized(),
759 remote.port());
760 SocketAddressPair address_pair(local_normalized, remote_normalized);
761 connections_->insert(std::pair<SocketAddressPair,
762 VirtualSocket*>(address_pair, remote_socket));
763 }
764
765 VirtualSocket* VirtualSocketServer::LookupConnection(
766 const SocketAddress& local,
767 const SocketAddress& remote) {
768 SocketAddress local_normalized(local.ipaddr().Normalized(),
769 local.port());
770 SocketAddress remote_normalized(remote.ipaddr().Normalized(),
771 remote.port());
772 SocketAddressPair address_pair(local_normalized, remote_normalized);
773 ConnectionMap::iterator it = connections_->find(address_pair);
774 return (connections_->end() != it) ? it->second : nullptr;
775 }
776
777 void VirtualSocketServer::RemoveConnection(const SocketAddress& local,
778 const SocketAddress& remote) {
779 SocketAddress local_normalized(local.ipaddr().Normalized(),
780 local.port());
781 SocketAddress remote_normalized(remote.ipaddr().Normalized(),
782 remote.port());
783 SocketAddressPair address_pair(local_normalized, remote_normalized);
784 connections_->erase(address_pair);
785 }
786
787 static double Random() {
788 return static_cast<double>(rand()) / RAND_MAX;
789 }
790
791 int VirtualSocketServer::Connect(VirtualSocket* socket,
792 const SocketAddress& remote_addr,
793 bool use_delay) {
794 uint32_t delay = use_delay ? GetTransitDelay(socket) : 0;
795 VirtualSocket* remote = LookupBinding(remote_addr);
796 if (!CanInteractWith(socket, remote)) {
797 LOG(LS_INFO) << "Address family mismatch between "
798 << socket->GetLocalAddress() << " and " << remote_addr;
799 return -1;
800 }
801 if (remote != nullptr) {
802 SocketAddress addr = socket->GetLocalAddress();
803 msg_queue_->PostDelayed(RTC_FROM_HERE, delay, remote, MSG_ID_CONNECT,
804 new MessageAddress(addr));
805 } else {
806 LOG(LS_INFO) << "No one listening at " << remote_addr;
807 msg_queue_->PostDelayed(RTC_FROM_HERE, delay, socket, MSG_ID_DISCONNECT);
808 }
809 return 0;
810 }
811
812 bool VirtualSocketServer::Disconnect(VirtualSocket* socket) {
813 if (socket) {
814 // If we simulate packets being delayed, we should simulate the
815 // equivalent of a FIN being delayed as well.
816 uint32_t delay = GetTransitDelay(socket);
817 // Remove the mapping.
818 msg_queue_->PostDelayed(RTC_FROM_HERE, delay, socket, MSG_ID_DISCONNECT);
819 return true;
820 }
821 return false;
822 }
823
824 int VirtualSocketServer::SendUdp(VirtualSocket* socket,
825 const char* data, size_t data_size,
826 const SocketAddress& remote_addr) {
827 if (sending_blocked_) {
828 CritScope cs(&socket->crit_);
829 socket->ready_to_send_ = false;
830 socket->error_ = EWOULDBLOCK;
831 return -1;
832 }
833
834 // See if we want to drop this packet.
835 if (Random() < drop_prob_) {
836 LOG(LS_VERBOSE) << "Dropping packet: bad luck";
837 return static_cast<int>(data_size);
838 }
839
840 VirtualSocket* recipient = LookupBinding(remote_addr);
841 if (!recipient) {
842 // Make a fake recipient for address family checking.
843 std::unique_ptr<VirtualSocket> dummy_socket(
844 CreateSocketInternal(AF_INET, SOCK_DGRAM));
845 dummy_socket->SetLocalAddress(remote_addr);
846 if (!CanInteractWith(socket, dummy_socket.get())) {
847 LOG(LS_VERBOSE) << "Incompatible address families: "
848 << socket->GetLocalAddress() << " and " << remote_addr;
849 return -1;
850 }
851 LOG(LS_VERBOSE) << "No one listening at " << remote_addr;
852 return static_cast<int>(data_size);
853 }
854
855 if (!CanInteractWith(socket, recipient)) {
856 LOG(LS_VERBOSE) << "Incompatible address families: "
857 << socket->GetLocalAddress() << " and " << remote_addr;
858 return -1;
859 }
860
861 {
862 CritScope cs(&socket->crit_);
863
864 int64_t cur_time = TimeMillis();
865 PurgeNetworkPackets(socket, cur_time);
866
867 // Determine whether we have enough bandwidth to accept this packet. To do
868 // this, we need to update the send queue. Once we know it's current size,
869 // we know whether we can fit this packet.
870 //
871 // NOTE: There are better algorithms for maintaining such a queue (such as
872 // "Derivative Random Drop"); however, this algorithm is a more accurate
873 // simulation of what a normal network would do.
874
875 size_t packet_size = data_size + UDP_HEADER_SIZE;
876 if (socket->network_size_ + packet_size > network_capacity_) {
877 LOG(LS_VERBOSE) << "Dropping packet: network capacity exceeded";
878 return static_cast<int>(data_size);
879 }
880
881 AddPacketToNetwork(socket, recipient, cur_time, data, data_size,
882 UDP_HEADER_SIZE, false);
883
884 return static_cast<int>(data_size);
885 }
886 }
887
888 void VirtualSocketServer::SendTcp(VirtualSocket* socket) {
889 if (sending_blocked_) {
890 // Eventually the socket's buffer will fill and VirtualSocket::SendTcp will
891 // set EWOULDBLOCK.
892 return;
893 }
894
895 // TCP can't send more data than will fill up the receiver's buffer.
896 // We track the data that is in the buffer plus data in flight using the
897 // recipient's recv_buffer_size_. Anything beyond that must be stored in the
898 // sender's buffer. We will trigger the buffered data to be sent when data
899 // is read from the recv_buffer.
900
901 // Lookup the local/remote pair in the connections table.
902 VirtualSocket* recipient = LookupConnection(socket->local_addr_,
903 socket->remote_addr_);
904 if (!recipient) {
905 LOG(LS_VERBOSE) << "Sending data to no one.";
906 return;
907 }
908
909 CritScope cs(&socket->crit_);
910
911 int64_t cur_time = TimeMillis();
912 PurgeNetworkPackets(socket, cur_time);
913
914 while (true) {
915 size_t available = recv_buffer_capacity_ - recipient->recv_buffer_size_;
916 size_t max_data_size =
917 std::min<size_t>(available, TCP_MSS - TCP_HEADER_SIZE);
918 size_t data_size = std::min(socket->send_buffer_.size(), max_data_size);
919 if (0 == data_size)
920 break;
921
922 AddPacketToNetwork(socket, recipient, cur_time, &socket->send_buffer_[0],
923 data_size, TCP_HEADER_SIZE, true);
924 recipient->recv_buffer_size_ += data_size;
925
926 size_t new_buffer_size = socket->send_buffer_.size() - data_size;
927 // Avoid undefined access beyond the last element of the vector.
928 // This only happens when new_buffer_size is 0.
929 if (data_size < socket->send_buffer_.size()) {
930 // memmove is required for potentially overlapping source/destination.
931 memmove(&socket->send_buffer_[0], &socket->send_buffer_[data_size],
932 new_buffer_size);
933 }
934 socket->send_buffer_.resize(new_buffer_size);
935 }
936
937 if (!socket->ready_to_send_ &&
938 (socket->send_buffer_.size() < send_buffer_capacity_)) {
939 socket->ready_to_send_ = true;
940 socket->SignalWriteEvent(socket);
941 }
942 }
943
944 void VirtualSocketServer::AddPacketToNetwork(VirtualSocket* sender,
945 VirtualSocket* recipient,
946 int64_t cur_time,
947 const char* data,
948 size_t data_size,
949 size_t header_size,
950 bool ordered) {
951 VirtualSocket::NetworkEntry entry;
952 entry.size = data_size + header_size;
953
954 sender->network_size_ += entry.size;
955 uint32_t send_delay = SendDelay(static_cast<uint32_t>(sender->network_size_));
956 entry.done_time = cur_time + send_delay;
957 sender->network_.push_back(entry);
958
959 // Find the delay for crossing the many virtual hops of the network.
960 uint32_t transit_delay = GetTransitDelay(sender);
961
962 // When the incoming packet is from a binding of the any address, translate it
963 // to the default route here such that the recipient will see the default
964 // route.
965 SocketAddress sender_addr = sender->local_addr_;
966 IPAddress default_ip = GetDefaultRoute(sender_addr.ipaddr().family());
967 if (sender_addr.IsAnyIP() && !IPIsUnspec(default_ip)) {
968 sender_addr.SetIP(default_ip);
969 }
970
971 // Post the packet as a message to be delivered (on our own thread)
972 Packet* p = new Packet(data, data_size, sender_addr);
973
974 int64_t ts = TimeAfter(send_delay + transit_delay);
975 if (ordered) {
976 // Ensure that new packets arrive after previous ones
977 ts = std::max(ts, sender->last_delivery_time_);
978 // A socket should not have both ordered and unordered delivery, so its last
979 // delivery time only needs to be updated when it has ordered delivery.
980 sender->last_delivery_time_ = ts;
981 }
982 msg_queue_->PostAt(RTC_FROM_HERE, ts, recipient, MSG_ID_PACKET, p);
983 }
984
985 void VirtualSocketServer::PurgeNetworkPackets(VirtualSocket* socket,
986 int64_t cur_time) {
987 while (!socket->network_.empty() &&
988 (socket->network_.front().done_time <= cur_time)) {
989 RTC_DCHECK(socket->network_size_ >= socket->network_.front().size);
990 socket->network_size_ -= socket->network_.front().size;
991 socket->network_.pop_front();
992 }
993 }
994
995 uint32_t VirtualSocketServer::SendDelay(uint32_t size) {
996 if (bandwidth_ == 0)
997 return 0;
998 else
999 return 1000 * size / bandwidth_;
1000 }
1001
1002 #if 0
1003 void PrintFunction(std::vector<std::pair<double, double> >* f) {
1004 return;
1005 double sum = 0;
1006 for (uint32_t i = 0; i < f->size(); ++i) {
1007 std::cout << (*f)[i].first << '\t' << (*f)[i].second << std::endl;
1008 sum += (*f)[i].second;
1009 }
1010 if (!f->empty()) {
1011 const double mean = sum / f->size();
1012 double sum_sq_dev = 0;
1013 for (uint32_t i = 0; i < f->size(); ++i) {
1014 double dev = (*f)[i].second - mean;
1015 sum_sq_dev += dev * dev;
1016 }
1017 std::cout << "Mean = " << mean << " StdDev = "
1018 << sqrt(sum_sq_dev / f->size()) << std::endl;
1019 }
1020 }
1021 #endif // <unused>
1022
1023 void VirtualSocketServer::UpdateDelayDistribution() {
1024 Function* dist = CreateDistribution(delay_mean_, delay_stddev_,
1025 delay_samples_);
1026 // We take a lock just to make sure we don't leak memory.
1027 {
1028 CritScope cs(&delay_crit_);
1029 delay_dist_.reset(dist);
1030 }
1031 }
1032
1033 static double PI = 4 * atan(1.0);
1034
1035 static double Normal(double x, double mean, double stddev) {
1036 double a = (x - mean) * (x - mean) / (2 * stddev * stddev);
1037 return exp(-a) / (stddev * sqrt(2 * PI));
1038 }
1039
1040 #if 0 // static unused gives a warning
1041 static double Pareto(double x, double min, double k) {
1042 if (x < min)
1043 return 0;
1044 else
1045 return k * std::pow(min, k) / std::pow(x, k+1);
1046 }
1047 #endif
1048
1049 VirtualSocketServer::Function* VirtualSocketServer::CreateDistribution(
1050 uint32_t mean,
1051 uint32_t stddev,
1052 uint32_t samples) {
1053 Function* f = new Function();
1054
1055 if (0 == stddev) {
1056 f->push_back(Point(mean, 1.0));
1057 } else {
1058 double start = 0;
1059 if (mean >= 4 * static_cast<double>(stddev))
1060 start = mean - 4 * static_cast<double>(stddev);
1061 double end = mean + 4 * static_cast<double>(stddev);
1062
1063 for (uint32_t i = 0; i < samples; i++) {
1064 double x = start + (end - start) * i / (samples - 1);
1065 double y = Normal(x, mean, stddev);
1066 f->push_back(Point(x, y));
1067 }
1068 }
1069 return Resample(Invert(Accumulate(f)), 0, 1, samples);
1070 }
1071
1072 uint32_t VirtualSocketServer::GetTransitDelay(Socket* socket) {
1073 // Use the delay based on the address if it is set.
1074 auto iter = delay_by_ip_.find(socket->GetLocalAddress().ipaddr());
1075 if (iter != delay_by_ip_.end()) {
1076 return static_cast<uint32_t>(iter->second);
1077 }
1078 // Otherwise, use the delay from the distribution distribution.
1079 size_t index = rand() % delay_dist_->size();
1080 double delay = (*delay_dist_)[index].second;
1081 // LOG_F(LS_INFO) << "random[" << index << "] = " << delay;
1082 return static_cast<uint32_t>(delay);
1083 }
1084
1085 struct FunctionDomainCmp {
1086 bool operator()(const VirtualSocketServer::Point& p1,
1087 const VirtualSocketServer::Point& p2) {
1088 return p1.first < p2.first;
1089 }
1090 bool operator()(double v1, const VirtualSocketServer::Point& p2) {
1091 return v1 < p2.first;
1092 }
1093 bool operator()(const VirtualSocketServer::Point& p1, double v2) {
1094 return p1.first < v2;
1095 }
1096 };
1097
1098 VirtualSocketServer::Function* VirtualSocketServer::Accumulate(Function* f) {
1099 RTC_DCHECK(f->size() >= 1);
1100 double v = 0;
1101 for (Function::size_type i = 0; i < f->size() - 1; ++i) {
1102 double dx = (*f)[i + 1].first - (*f)[i].first;
1103 double avgy = ((*f)[i + 1].second + (*f)[i].second) / 2;
1104 (*f)[i].second = v;
1105 v = v + dx * avgy;
1106 }
1107 (*f)[f->size()-1].second = v;
1108 return f;
1109 }
1110
1111 VirtualSocketServer::Function* VirtualSocketServer::Invert(Function* f) {
1112 for (Function::size_type i = 0; i < f->size(); ++i)
1113 std::swap((*f)[i].first, (*f)[i].second);
1114
1115 std::sort(f->begin(), f->end(), FunctionDomainCmp());
1116 return f;
1117 }
1118
1119 VirtualSocketServer::Function* VirtualSocketServer::Resample(Function* f,
1120 double x1,
1121 double x2,
1122 uint32_t samples) {
1123 Function* g = new Function();
1124
1125 for (size_t i = 0; i < samples; i++) {
1126 double x = x1 + (x2 - x1) * i / (samples - 1);
1127 double y = Evaluate(f, x);
1128 g->push_back(Point(x, y));
1129 }
1130
1131 delete f;
1132 return g;
1133 }
1134
1135 double VirtualSocketServer::Evaluate(Function* f, double x) {
1136 Function::iterator iter =
1137 std::lower_bound(f->begin(), f->end(), x, FunctionDomainCmp());
1138 if (iter == f->begin()) {
1139 return (*f)[0].second;
1140 } else if (iter == f->end()) {
1141 RTC_DCHECK(f->size() >= 1);
1142 return (*f)[f->size() - 1].second;
1143 } else if (iter->first == x) {
1144 return iter->second;
1145 } else {
1146 double x1 = (iter - 1)->first;
1147 double y1 = (iter - 1)->second;
1148 double x2 = iter->first;
1149 double y2 = iter->second;
1150 return y1 + (y2 - y1) * (x - x1) / (x2 - x1);
1151 }
1152 }
1153
1154 bool VirtualSocketServer::CanInteractWith(VirtualSocket* local,
1155 VirtualSocket* remote) {
1156 if (!local || !remote) {
1157 return false;
1158 }
1159 IPAddress local_ip = local->GetLocalAddress().ipaddr();
1160 IPAddress remote_ip = remote->GetLocalAddress().ipaddr();
1161 IPAddress local_normalized = local_ip.Normalized();
1162 IPAddress remote_normalized = remote_ip.Normalized();
1163 // Check if the addresses are the same family after Normalization (turns
1164 // mapped IPv6 address into IPv4 addresses).
1165 // This will stop unmapped V6 addresses from talking to mapped V6 addresses.
1166 if (local_normalized.family() == remote_normalized.family()) {
1167 return true;
1168 }
1169
1170 // If ip1 is IPv4 and ip2 is :: and ip2 is not IPV6_V6ONLY.
1171 int remote_v6_only = 0;
1172 remote->GetOption(Socket::OPT_IPV6_V6ONLY, &remote_v6_only);
1173 if (local_ip.family() == AF_INET && !remote_v6_only && IPIsAny(remote_ip)) {
1174 return true;
1175 }
1176 // Same check, backwards.
1177 int local_v6_only = 0;
1178 local->GetOption(Socket::OPT_IPV6_V6ONLY, &local_v6_only);
1179 if (remote_ip.family() == AF_INET && !local_v6_only && IPIsAny(local_ip)) {
1180 return true;
1181 }
1182
1183 // Check to see if either socket was explicitly bound to IPv6-any.
1184 // These sockets can talk with anyone.
1185 if (local_ip.family() == AF_INET6 && local->was_any()) {
1186 return true;
1187 }
1188 if (remote_ip.family() == AF_INET6 && remote->was_any()) {
1189 return true;
1190 }
1191
1192 return false;
1193 }
1194
1195 IPAddress VirtualSocketServer::GetDefaultRoute(int family) {
1196 if (family == AF_INET) {
1197 return default_route_v4_;
1198 }
1199 if (family == AF_INET6) {
1200 return default_route_v6_;
1201 }
1202 return IPAddress();
1203 }
1204 void VirtualSocketServer::SetDefaultRoute(const IPAddress& from_addr) {
1205 RTC_DCHECK(!IPIsAny(from_addr));
1206 if (from_addr.family() == AF_INET) {
1207 default_route_v4_ = from_addr;
1208 } else if (from_addr.family() == AF_INET6) {
1209 default_route_v6_ = from_addr;
1210 }
1211 }
1212
1213 } // namespace rtc
OLDNEW
« no previous file with comments | « webrtc/base/virtualsocketserver.h ('k') | webrtc/base/weak_ptr.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698