Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(117)

Side by Side Diff: webrtc/base/virtualsocket_unittest.cc

Issue 2877023002: Move webrtc/{base => rtc_base} (Closed)
Patch Set: update presubmit.py and DEPS include rules Created 3 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « webrtc/base/unixfilesystem.cc ('k') | webrtc/base/virtualsocketserver.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 /*
2 * Copyright 2006 The WebRTC Project Authors. All rights reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <math.h>
12 #include <time.h>
13 #if defined(WEBRTC_POSIX)
14 #include <netinet/in.h>
15 #endif
16
17 #include <memory>
18
19 #include "webrtc/base/arraysize.h"
20 #include "webrtc/base/fakeclock.h"
21 #include "webrtc/base/gunit.h"
22 #include "webrtc/base/logging.h"
23 #include "webrtc/base/ptr_util.h"
24 #include "webrtc/base/testclient.h"
25 #include "webrtc/base/testutils.h"
26 #include "webrtc/base/thread.h"
27 #include "webrtc/base/timeutils.h"
28 #include "webrtc/base/virtualsocketserver.h"
29
30 using namespace rtc;
31
32 using webrtc::testing::SSE_CLOSE;
33 using webrtc::testing::SSE_ERROR;
34 using webrtc::testing::SSE_OPEN;
35 using webrtc::testing::SSE_READ;
36 using webrtc::testing::SSE_WRITE;
37 using webrtc::testing::StreamSink;
38
39 // Sends at a constant rate but with random packet sizes.
40 struct Sender : public MessageHandler {
41 Sender(Thread* th, AsyncSocket* s, uint32_t rt)
42 : thread(th),
43 socket(MakeUnique<AsyncUDPSocket>(s)),
44 done(false),
45 rate(rt),
46 count(0) {
47 last_send = rtc::TimeMillis();
48 thread->PostDelayed(RTC_FROM_HERE, NextDelay(), this, 1);
49 }
50
51 uint32_t NextDelay() {
52 uint32_t size = (rand() % 4096) + 1;
53 return 1000 * size / rate;
54 }
55
56 void OnMessage(Message* pmsg) {
57 ASSERT_EQ(1u, pmsg->message_id);
58
59 if (done)
60 return;
61
62 int64_t cur_time = rtc::TimeMillis();
63 int64_t delay = cur_time - last_send;
64 uint32_t size = static_cast<uint32_t>(rate * delay / 1000);
65 size = std::min<uint32_t>(size, 4096);
66 size = std::max<uint32_t>(size, sizeof(uint32_t));
67
68 count += size;
69 memcpy(dummy, &cur_time, sizeof(cur_time));
70 socket->Send(dummy, size, options);
71
72 last_send = cur_time;
73 thread->PostDelayed(RTC_FROM_HERE, NextDelay(), this, 1);
74 }
75
76 Thread* thread;
77 std::unique_ptr<AsyncUDPSocket> socket;
78 rtc::PacketOptions options;
79 bool done;
80 uint32_t rate; // bytes per second
81 uint32_t count;
82 int64_t last_send;
83 char dummy[4096];
84 };
85
86 struct Receiver : public MessageHandler, public sigslot::has_slots<> {
87 Receiver(Thread* th, AsyncSocket* s, uint32_t bw)
88 : thread(th),
89 socket(MakeUnique<AsyncUDPSocket>(s)),
90 bandwidth(bw),
91 done(false),
92 count(0),
93 sec_count(0),
94 sum(0),
95 sum_sq(0),
96 samples(0) {
97 socket->SignalReadPacket.connect(this, &Receiver::OnReadPacket);
98 thread->PostDelayed(RTC_FROM_HERE, 1000, this, 1);
99 }
100
101 ~Receiver() {
102 thread->Clear(this);
103 }
104
105 void OnReadPacket(AsyncPacketSocket* s, const char* data, size_t size,
106 const SocketAddress& remote_addr,
107 const PacketTime& packet_time) {
108 ASSERT_EQ(socket.get(), s);
109 ASSERT_GE(size, 4U);
110
111 count += size;
112 sec_count += size;
113
114 uint32_t send_time = *reinterpret_cast<const uint32_t*>(data);
115 uint32_t recv_time = rtc::TimeMillis();
116 uint32_t delay = recv_time - send_time;
117 sum += delay;
118 sum_sq += delay * delay;
119 samples += 1;
120 }
121
122 void OnMessage(Message* pmsg) {
123 ASSERT_EQ(1u, pmsg->message_id);
124
125 if (done)
126 return;
127
128 // It is always possible for us to receive more than expected because
129 // packets can be further delayed in delivery.
130 if (bandwidth > 0)
131 ASSERT_TRUE(sec_count <= 5 * bandwidth / 4);
132 sec_count = 0;
133 thread->PostDelayed(RTC_FROM_HERE, 1000, this, 1);
134 }
135
136 Thread* thread;
137 std::unique_ptr<AsyncUDPSocket> socket;
138 uint32_t bandwidth;
139 bool done;
140 size_t count;
141 size_t sec_count;
142 double sum;
143 double sum_sq;
144 uint32_t samples;
145 };
146
147 // Note: This test uses a fake clock in addition to a virtual network.
148 class VirtualSocketServerTest : public testing::Test {
149 public:
150 VirtualSocketServerTest()
151 : ss_(&fake_clock_),
152 thread_(&ss_),
153 kIPv4AnyAddress(IPAddress(INADDR_ANY), 0),
154 kIPv6AnyAddress(IPAddress(in6addr_any), 0) {}
155
156 void CheckPortIncrementalization(const SocketAddress& post,
157 const SocketAddress& pre) {
158 EXPECT_EQ(post.port(), pre.port() + 1);
159 IPAddress post_ip = post.ipaddr();
160 IPAddress pre_ip = pre.ipaddr();
161 EXPECT_EQ(pre_ip.family(), post_ip.family());
162 if (post_ip.family() == AF_INET) {
163 in_addr pre_ipv4 = pre_ip.ipv4_address();
164 in_addr post_ipv4 = post_ip.ipv4_address();
165 EXPECT_EQ(post_ipv4.s_addr, pre_ipv4.s_addr);
166 } else if (post_ip.family() == AF_INET6) {
167 in6_addr post_ip6 = post_ip.ipv6_address();
168 in6_addr pre_ip6 = pre_ip.ipv6_address();
169 uint32_t* post_as_ints = reinterpret_cast<uint32_t*>(&post_ip6.s6_addr);
170 uint32_t* pre_as_ints = reinterpret_cast<uint32_t*>(&pre_ip6.s6_addr);
171 EXPECT_EQ(post_as_ints[3], pre_as_ints[3]);
172 }
173 }
174
175 // Test a client can bind to the any address, and all sent packets will have
176 // the default route as the source address. Also, it can receive packets sent
177 // to the default route.
178 void TestDefaultRoute(const IPAddress& default_route) {
179 ss_.SetDefaultRoute(default_route);
180
181 // Create client1 bound to the any address.
182 AsyncSocket* socket =
183 ss_.CreateAsyncSocket(default_route.family(), SOCK_DGRAM);
184 socket->Bind(EmptySocketAddressWithFamily(default_route.family()));
185 SocketAddress client1_any_addr = socket->GetLocalAddress();
186 EXPECT_TRUE(client1_any_addr.IsAnyIP());
187 auto client1 = MakeUnique<TestClient>(MakeUnique<AsyncUDPSocket>(socket),
188 &fake_clock_);
189
190 // Create client2 bound to the default route.
191 AsyncSocket* socket2 =
192 ss_.CreateAsyncSocket(default_route.family(), SOCK_DGRAM);
193 socket2->Bind(SocketAddress(default_route, 0));
194 SocketAddress client2_addr = socket2->GetLocalAddress();
195 EXPECT_FALSE(client2_addr.IsAnyIP());
196 auto client2 = MakeUnique<TestClient>(MakeUnique<AsyncUDPSocket>(socket2),
197 &fake_clock_);
198
199 // Client1 sends to client2, client2 should see the default route as
200 // client1's address.
201 SocketAddress client1_addr;
202 EXPECT_EQ(6, client1->SendTo("bizbaz", 6, client2_addr));
203 EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &client1_addr));
204 EXPECT_EQ(client1_addr,
205 SocketAddress(default_route, client1_any_addr.port()));
206
207 // Client2 can send back to client1's default route address.
208 EXPECT_EQ(3, client2->SendTo("foo", 3, client1_addr));
209 EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &client2_addr));
210 }
211
212 void BasicTest(const SocketAddress& initial_addr) {
213 AsyncSocket* socket =
214 ss_.CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM);
215 socket->Bind(initial_addr);
216 SocketAddress server_addr = socket->GetLocalAddress();
217 // Make sure VSS didn't switch families on us.
218 EXPECT_EQ(server_addr.family(), initial_addr.family());
219
220 auto client1 = MakeUnique<TestClient>(MakeUnique<AsyncUDPSocket>(socket),
221 &fake_clock_);
222 AsyncSocket* socket2 =
223 ss_.CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM);
224 auto client2 = MakeUnique<TestClient>(MakeUnique<AsyncUDPSocket>(socket2),
225 &fake_clock_);
226
227 SocketAddress client2_addr;
228 EXPECT_EQ(3, client2->SendTo("foo", 3, server_addr));
229 EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &client2_addr));
230
231 SocketAddress client1_addr;
232 EXPECT_EQ(6, client1->SendTo("bizbaz", 6, client2_addr));
233 EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &client1_addr));
234 EXPECT_EQ(client1_addr, server_addr);
235
236 SocketAddress empty = EmptySocketAddressWithFamily(initial_addr.family());
237 for (int i = 0; i < 10; i++) {
238 client2 = MakeUnique<TestClient>(
239 WrapUnique(AsyncUDPSocket::Create(&ss_, empty)), &fake_clock_);
240
241 SocketAddress next_client2_addr;
242 EXPECT_EQ(3, client2->SendTo("foo", 3, server_addr));
243 EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &next_client2_addr));
244 CheckPortIncrementalization(next_client2_addr, client2_addr);
245 // EXPECT_EQ(next_client2_addr.port(), client2_addr.port() + 1);
246
247 SocketAddress server_addr2;
248 EXPECT_EQ(6, client1->SendTo("bizbaz", 6, next_client2_addr));
249 EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &server_addr2));
250 EXPECT_EQ(server_addr2, server_addr);
251
252 client2_addr = next_client2_addr;
253 }
254 }
255
256 // initial_addr should be made from either INADDR_ANY or in6addr_any.
257 void ConnectTest(const SocketAddress& initial_addr) {
258 StreamSink sink;
259 SocketAddress accept_addr;
260 const SocketAddress kEmptyAddr =
261 EmptySocketAddressWithFamily(initial_addr.family());
262
263 // Create client
264 std::unique_ptr<AsyncSocket> client =
265 WrapUnique(ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM));
266 sink.Monitor(client.get());
267 EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED);
268 EXPECT_TRUE(client->GetLocalAddress().IsNil());
269
270 // Create server
271 std::unique_ptr<AsyncSocket> server =
272 WrapUnique(ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM));
273 sink.Monitor(server.get());
274 EXPECT_NE(0, server->Listen(5)); // Bind required
275 EXPECT_EQ(0, server->Bind(initial_addr));
276 EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family());
277 EXPECT_EQ(0, server->Listen(5));
278 EXPECT_EQ(server->GetState(), AsyncSocket::CS_CONNECTING);
279
280 // No pending server connections
281 EXPECT_FALSE(sink.Check(server.get(), SSE_READ));
282 EXPECT_TRUE(nullptr == server->Accept(&accept_addr));
283 EXPECT_EQ(AF_UNSPEC, accept_addr.family());
284
285 // Attempt connect to listening socket
286 EXPECT_EQ(0, client->Connect(server->GetLocalAddress()));
287 EXPECT_NE(client->GetLocalAddress(), kEmptyAddr); // Implicit Bind
288 EXPECT_NE(AF_UNSPEC, client->GetLocalAddress().family()); // Implicit Bind
289 EXPECT_NE(client->GetLocalAddress(), server->GetLocalAddress());
290
291 // Client is connecting
292 EXPECT_EQ(client->GetState(), AsyncSocket::CS_CONNECTING);
293 EXPECT_FALSE(sink.Check(client.get(), SSE_OPEN));
294 EXPECT_FALSE(sink.Check(client.get(), SSE_CLOSE));
295
296 ss_.ProcessMessagesUntilIdle();
297
298 // Client still connecting
299 EXPECT_EQ(client->GetState(), AsyncSocket::CS_CONNECTING);
300 EXPECT_FALSE(sink.Check(client.get(), SSE_OPEN));
301 EXPECT_FALSE(sink.Check(client.get(), SSE_CLOSE));
302
303 // Server has pending connection
304 EXPECT_TRUE(sink.Check(server.get(), SSE_READ));
305 std::unique_ptr<Socket> accepted = WrapUnique(server->Accept(&accept_addr));
306 EXPECT_TRUE(nullptr != accepted);
307 EXPECT_NE(accept_addr, kEmptyAddr);
308 EXPECT_EQ(accepted->GetRemoteAddress(), accept_addr);
309
310 EXPECT_EQ(accepted->GetState(), AsyncSocket::CS_CONNECTED);
311 EXPECT_EQ(accepted->GetLocalAddress(), server->GetLocalAddress());
312 EXPECT_EQ(accepted->GetRemoteAddress(), client->GetLocalAddress());
313
314 ss_.ProcessMessagesUntilIdle();
315
316 // Client has connected
317 EXPECT_EQ(client->GetState(), AsyncSocket::CS_CONNECTED);
318 EXPECT_TRUE(sink.Check(client.get(), SSE_OPEN));
319 EXPECT_FALSE(sink.Check(client.get(), SSE_CLOSE));
320 EXPECT_EQ(client->GetRemoteAddress(), server->GetLocalAddress());
321 EXPECT_EQ(client->GetRemoteAddress(), accepted->GetLocalAddress());
322 }
323
324 void ConnectToNonListenerTest(const SocketAddress& initial_addr) {
325 StreamSink sink;
326 SocketAddress accept_addr;
327 const SocketAddress nil_addr;
328 const SocketAddress empty_addr =
329 EmptySocketAddressWithFamily(initial_addr.family());
330
331 // Create client
332 std::unique_ptr<AsyncSocket> client =
333 WrapUnique(ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM));
334 sink.Monitor(client.get());
335
336 // Create server
337 std::unique_ptr<AsyncSocket> server =
338 WrapUnique(ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM));
339 sink.Monitor(server.get());
340 EXPECT_EQ(0, server->Bind(initial_addr));
341 EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family());
342 // Attempt connect to non-listening socket
343 EXPECT_EQ(0, client->Connect(server->GetLocalAddress()));
344
345 ss_.ProcessMessagesUntilIdle();
346
347 // No pending server connections
348 EXPECT_FALSE(sink.Check(server.get(), SSE_READ));
349 EXPECT_TRUE(nullptr == server->Accept(&accept_addr));
350 EXPECT_EQ(accept_addr, nil_addr);
351
352 // Connection failed
353 EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED);
354 EXPECT_FALSE(sink.Check(client.get(), SSE_OPEN));
355 EXPECT_TRUE(sink.Check(client.get(), SSE_ERROR));
356 EXPECT_EQ(client->GetRemoteAddress(), nil_addr);
357 }
358
359 void CloseDuringConnectTest(const SocketAddress& initial_addr) {
360 StreamSink sink;
361 SocketAddress accept_addr;
362 const SocketAddress empty_addr =
363 EmptySocketAddressWithFamily(initial_addr.family());
364
365 // Create client and server
366 std::unique_ptr<AsyncSocket> client(
367 ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM));
368 sink.Monitor(client.get());
369 std::unique_ptr<AsyncSocket> server(
370 ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM));
371 sink.Monitor(server.get());
372
373 // Initiate connect
374 EXPECT_EQ(0, server->Bind(initial_addr));
375 EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family());
376
377 EXPECT_EQ(0, server->Listen(5));
378 EXPECT_EQ(0, client->Connect(server->GetLocalAddress()));
379
380 // Server close before socket enters accept queue
381 EXPECT_FALSE(sink.Check(server.get(), SSE_READ));
382 server->Close();
383
384 ss_.ProcessMessagesUntilIdle();
385
386 // Result: connection failed
387 EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED);
388 EXPECT_TRUE(sink.Check(client.get(), SSE_ERROR));
389
390 server.reset(ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM));
391 sink.Monitor(server.get());
392
393 // Initiate connect
394 EXPECT_EQ(0, server->Bind(initial_addr));
395 EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family());
396
397 EXPECT_EQ(0, server->Listen(5));
398 EXPECT_EQ(0, client->Connect(server->GetLocalAddress()));
399
400 ss_.ProcessMessagesUntilIdle();
401
402 // Server close while socket is in accept queue
403 EXPECT_TRUE(sink.Check(server.get(), SSE_READ));
404 server->Close();
405
406 ss_.ProcessMessagesUntilIdle();
407
408 // Result: connection failed
409 EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED);
410 EXPECT_TRUE(sink.Check(client.get(), SSE_ERROR));
411
412 // New server
413 server.reset(ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM));
414 sink.Monitor(server.get());
415
416 // Initiate connect
417 EXPECT_EQ(0, server->Bind(initial_addr));
418 EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family());
419
420 EXPECT_EQ(0, server->Listen(5));
421 EXPECT_EQ(0, client->Connect(server->GetLocalAddress()));
422
423 ss_.ProcessMessagesUntilIdle();
424
425 // Server accepts connection
426 EXPECT_TRUE(sink.Check(server.get(), SSE_READ));
427 std::unique_ptr<AsyncSocket> accepted(server->Accept(&accept_addr));
428 ASSERT_TRUE(nullptr != accepted.get());
429 sink.Monitor(accepted.get());
430
431 // Client closes before connection complets
432 EXPECT_EQ(accepted->GetState(), AsyncSocket::CS_CONNECTED);
433
434 // Connected message has not been processed yet.
435 EXPECT_EQ(client->GetState(), AsyncSocket::CS_CONNECTING);
436 client->Close();
437
438 ss_.ProcessMessagesUntilIdle();
439
440 // Result: accepted socket closes
441 EXPECT_EQ(accepted->GetState(), AsyncSocket::CS_CLOSED);
442 EXPECT_TRUE(sink.Check(accepted.get(), SSE_CLOSE));
443 EXPECT_FALSE(sink.Check(client.get(), SSE_CLOSE));
444 }
445
446 void CloseTest(const SocketAddress& initial_addr) {
447 StreamSink sink;
448 const SocketAddress kEmptyAddr;
449
450 // Create clients
451 std::unique_ptr<AsyncSocket> a =
452 WrapUnique(ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM));
453 sink.Monitor(a.get());
454 a->Bind(initial_addr);
455 EXPECT_EQ(a->GetLocalAddress().family(), initial_addr.family());
456
457 std::unique_ptr<AsyncSocket> b =
458 WrapUnique(ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM));
459 sink.Monitor(b.get());
460 b->Bind(initial_addr);
461 EXPECT_EQ(b->GetLocalAddress().family(), initial_addr.family());
462
463 EXPECT_EQ(0, a->Connect(b->GetLocalAddress()));
464 EXPECT_EQ(0, b->Connect(a->GetLocalAddress()));
465
466 ss_.ProcessMessagesUntilIdle();
467
468 EXPECT_TRUE(sink.Check(a.get(), SSE_OPEN));
469 EXPECT_EQ(a->GetState(), AsyncSocket::CS_CONNECTED);
470 EXPECT_EQ(a->GetRemoteAddress(), b->GetLocalAddress());
471
472 EXPECT_TRUE(sink.Check(b.get(), SSE_OPEN));
473 EXPECT_EQ(b->GetState(), AsyncSocket::CS_CONNECTED);
474 EXPECT_EQ(b->GetRemoteAddress(), a->GetLocalAddress());
475
476 EXPECT_EQ(1, a->Send("a", 1));
477 b->Close();
478 EXPECT_EQ(1, a->Send("b", 1));
479
480 ss_.ProcessMessagesUntilIdle();
481
482 char buffer[10];
483 EXPECT_FALSE(sink.Check(b.get(), SSE_READ));
484 EXPECT_EQ(-1, b->Recv(buffer, 10, nullptr));
485
486 EXPECT_TRUE(sink.Check(a.get(), SSE_CLOSE));
487 EXPECT_EQ(a->GetState(), AsyncSocket::CS_CLOSED);
488 EXPECT_EQ(a->GetRemoteAddress(), kEmptyAddr);
489
490 // No signal for Closer
491 EXPECT_FALSE(sink.Check(b.get(), SSE_CLOSE));
492 EXPECT_EQ(b->GetState(), AsyncSocket::CS_CLOSED);
493 EXPECT_EQ(b->GetRemoteAddress(), kEmptyAddr);
494 }
495
496 void TcpSendTest(const SocketAddress& initial_addr) {
497 StreamSink sink;
498 const SocketAddress kEmptyAddr;
499
500 // Connect two sockets
501 std::unique_ptr<AsyncSocket> a =
502 WrapUnique(ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM));
503 sink.Monitor(a.get());
504 a->Bind(initial_addr);
505 EXPECT_EQ(a->GetLocalAddress().family(), initial_addr.family());
506
507 std::unique_ptr<AsyncSocket> b =
508 WrapUnique(ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM));
509 sink.Monitor(b.get());
510 b->Bind(initial_addr);
511 EXPECT_EQ(b->GetLocalAddress().family(), initial_addr.family());
512
513 EXPECT_EQ(0, a->Connect(b->GetLocalAddress()));
514 EXPECT_EQ(0, b->Connect(a->GetLocalAddress()));
515
516 ss_.ProcessMessagesUntilIdle();
517
518 const size_t kBufferSize = 2000;
519 ss_.set_send_buffer_capacity(kBufferSize);
520 ss_.set_recv_buffer_capacity(kBufferSize);
521
522 const size_t kDataSize = 5000;
523 char send_buffer[kDataSize], recv_buffer[kDataSize];
524 for (size_t i = 0; i < kDataSize; ++i)
525 send_buffer[i] = static_cast<char>(i % 256);
526 memset(recv_buffer, 0, sizeof(recv_buffer));
527 size_t send_pos = 0, recv_pos = 0;
528
529 // Can't send more than send buffer in one write
530 int result = a->Send(send_buffer + send_pos, kDataSize - send_pos);
531 EXPECT_EQ(static_cast<int>(kBufferSize), result);
532 send_pos += result;
533
534 ss_.ProcessMessagesUntilIdle();
535 EXPECT_FALSE(sink.Check(a.get(), SSE_WRITE));
536 EXPECT_TRUE(sink.Check(b.get(), SSE_READ));
537
538 // Receive buffer is already filled, fill send buffer again
539 result = a->Send(send_buffer + send_pos, kDataSize - send_pos);
540 EXPECT_EQ(static_cast<int>(kBufferSize), result);
541 send_pos += result;
542
543 ss_.ProcessMessagesUntilIdle();
544 EXPECT_FALSE(sink.Check(a.get(), SSE_WRITE));
545 EXPECT_FALSE(sink.Check(b.get(), SSE_READ));
546
547 // No more room in send or receive buffer
548 result = a->Send(send_buffer + send_pos, kDataSize - send_pos);
549 EXPECT_EQ(-1, result);
550 EXPECT_TRUE(a->IsBlocking());
551
552 // Read a subset of the data
553 result = b->Recv(recv_buffer + recv_pos, 500, nullptr);
554 EXPECT_EQ(500, result);
555 recv_pos += result;
556
557 ss_.ProcessMessagesUntilIdle();
558 EXPECT_TRUE(sink.Check(a.get(), SSE_WRITE));
559 EXPECT_TRUE(sink.Check(b.get(), SSE_READ));
560
561 // Room for more on the sending side
562 result = a->Send(send_buffer + send_pos, kDataSize - send_pos);
563 EXPECT_EQ(500, result);
564 send_pos += result;
565
566 // Empty the recv buffer
567 while (true) {
568 result = b->Recv(recv_buffer + recv_pos, kDataSize - recv_pos, nullptr);
569 if (result < 0) {
570 EXPECT_EQ(-1, result);
571 EXPECT_TRUE(b->IsBlocking());
572 break;
573 }
574 recv_pos += result;
575 }
576
577 ss_.ProcessMessagesUntilIdle();
578 EXPECT_TRUE(sink.Check(b.get(), SSE_READ));
579
580 // Continue to empty the recv buffer
581 while (true) {
582 result = b->Recv(recv_buffer + recv_pos, kDataSize - recv_pos, nullptr);
583 if (result < 0) {
584 EXPECT_EQ(-1, result);
585 EXPECT_TRUE(b->IsBlocking());
586 break;
587 }
588 recv_pos += result;
589 }
590
591 // Send last of the data
592 result = a->Send(send_buffer + send_pos, kDataSize - send_pos);
593 EXPECT_EQ(500, result);
594 send_pos += result;
595
596 ss_.ProcessMessagesUntilIdle();
597 EXPECT_TRUE(sink.Check(b.get(), SSE_READ));
598
599 // Receive the last of the data
600 while (true) {
601 result = b->Recv(recv_buffer + recv_pos, kDataSize - recv_pos, nullptr);
602 if (result < 0) {
603 EXPECT_EQ(-1, result);
604 EXPECT_TRUE(b->IsBlocking());
605 break;
606 }
607 recv_pos += result;
608 }
609
610 ss_.ProcessMessagesUntilIdle();
611 EXPECT_FALSE(sink.Check(b.get(), SSE_READ));
612
613 // The received data matches the sent data
614 EXPECT_EQ(kDataSize, send_pos);
615 EXPECT_EQ(kDataSize, recv_pos);
616 EXPECT_EQ(0, memcmp(recv_buffer, send_buffer, kDataSize));
617 }
618
619 void TcpSendsPacketsInOrderTest(const SocketAddress& initial_addr) {
620 const SocketAddress kEmptyAddr;
621
622 // Connect two sockets
623 std::unique_ptr<AsyncSocket> a =
624 WrapUnique(ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM));
625 std::unique_ptr<AsyncSocket> b =
626 WrapUnique(ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM));
627 a->Bind(initial_addr);
628 EXPECT_EQ(a->GetLocalAddress().family(), initial_addr.family());
629
630 b->Bind(initial_addr);
631 EXPECT_EQ(b->GetLocalAddress().family(), initial_addr.family());
632
633 EXPECT_EQ(0, a->Connect(b->GetLocalAddress()));
634 EXPECT_EQ(0, b->Connect(a->GetLocalAddress()));
635 ss_.ProcessMessagesUntilIdle();
636
637 // First, deliver all packets in 0 ms.
638 char buffer[2] = { 0, 0 };
639 const char cNumPackets = 10;
640 for (char i = 0; i < cNumPackets; ++i) {
641 buffer[0] = '0' + i;
642 EXPECT_EQ(1, a->Send(buffer, 1));
643 }
644
645 ss_.ProcessMessagesUntilIdle();
646
647 for (char i = 0; i < cNumPackets; ++i) {
648 EXPECT_EQ(1, b->Recv(buffer, sizeof(buffer), nullptr));
649 EXPECT_EQ(static_cast<char>('0' + i), buffer[0]);
650 }
651
652 // Next, deliver packets at random intervals
653 const uint32_t mean = 50;
654 const uint32_t stddev = 50;
655
656 ss_.set_delay_mean(mean);
657 ss_.set_delay_stddev(stddev);
658 ss_.UpdateDelayDistribution();
659
660 for (char i = 0; i < cNumPackets; ++i) {
661 buffer[0] = 'A' + i;
662 EXPECT_EQ(1, a->Send(buffer, 1));
663 }
664
665 ss_.ProcessMessagesUntilIdle();
666
667 for (char i = 0; i < cNumPackets; ++i) {
668 EXPECT_EQ(1, b->Recv(buffer, sizeof(buffer), nullptr));
669 EXPECT_EQ(static_cast<char>('A' + i), buffer[0]);
670 }
671 }
672
673 // It is important that initial_addr's port has to be 0 such that the
674 // incremental port behavior could ensure the 2 Binds result in different
675 // address.
676 void BandwidthTest(const SocketAddress& initial_addr) {
677 AsyncSocket* send_socket =
678 ss_.CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM);
679 AsyncSocket* recv_socket =
680 ss_.CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM);
681 ASSERT_EQ(0, send_socket->Bind(initial_addr));
682 ASSERT_EQ(0, recv_socket->Bind(initial_addr));
683 EXPECT_EQ(send_socket->GetLocalAddress().family(), initial_addr.family());
684 EXPECT_EQ(recv_socket->GetLocalAddress().family(), initial_addr.family());
685 ASSERT_EQ(0, send_socket->Connect(recv_socket->GetLocalAddress()));
686
687 uint32_t bandwidth = 64 * 1024;
688 ss_.set_bandwidth(bandwidth);
689
690 Thread* pthMain = Thread::Current();
691 Sender sender(pthMain, send_socket, 80 * 1024);
692 Receiver receiver(pthMain, recv_socket, bandwidth);
693
694 // Allow the sender to run for 5 (simulated) seconds, then be stopped for 5
695 // seconds.
696 SIMULATED_WAIT(false, 5000, fake_clock_);
697 sender.done = true;
698 SIMULATED_WAIT(false, 5000, fake_clock_);
699
700 // Ensure the observed bandwidth fell within a reasonable margin of error.
701 EXPECT_TRUE(receiver.count >= 5 * 3 * bandwidth / 4);
702 EXPECT_TRUE(receiver.count <= 6 * bandwidth); // queue could drain for 1s
703
704 ss_.set_bandwidth(0);
705 }
706
707 // It is important that initial_addr's port has to be 0 such that the
708 // incremental port behavior could ensure the 2 Binds result in different
709 // address.
710 void DelayTest(const SocketAddress& initial_addr) {
711 time_t seed = ::time(nullptr);
712 LOG(LS_VERBOSE) << "seed = " << seed;
713 srand(static_cast<unsigned int>(seed));
714
715 const uint32_t mean = 2000;
716 const uint32_t stddev = 500;
717
718 ss_.set_delay_mean(mean);
719 ss_.set_delay_stddev(stddev);
720 ss_.UpdateDelayDistribution();
721
722 AsyncSocket* send_socket =
723 ss_.CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM);
724 AsyncSocket* recv_socket =
725 ss_.CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM);
726 ASSERT_EQ(0, send_socket->Bind(initial_addr));
727 ASSERT_EQ(0, recv_socket->Bind(initial_addr));
728 EXPECT_EQ(send_socket->GetLocalAddress().family(), initial_addr.family());
729 EXPECT_EQ(recv_socket->GetLocalAddress().family(), initial_addr.family());
730 ASSERT_EQ(0, send_socket->Connect(recv_socket->GetLocalAddress()));
731
732 Thread* pthMain = Thread::Current();
733 // Avg packet size is 2K, so at 200KB/s for 10s, we should see about
734 // 1000 packets, which is necessary to get a good distribution.
735 Sender sender(pthMain, send_socket, 100 * 2 * 1024);
736 Receiver receiver(pthMain, recv_socket, 0);
737
738 // Simulate 10 seconds of packets being sent, then check the observed delay
739 // distribution.
740 SIMULATED_WAIT(false, 10000, fake_clock_);
741 sender.done = receiver.done = true;
742 ss_.ProcessMessagesUntilIdle();
743
744 const double sample_mean = receiver.sum / receiver.samples;
745 double num =
746 receiver.samples * receiver.sum_sq - receiver.sum * receiver.sum;
747 double den = receiver.samples * (receiver.samples - 1);
748 const double sample_stddev = sqrt(num / den);
749 LOG(LS_VERBOSE) << "mean=" << sample_mean << " stddev=" << sample_stddev;
750
751 EXPECT_LE(500u, receiver.samples);
752 // We initially used a 0.1 fudge factor, but on the build machine, we
753 // have seen the value differ by as much as 0.13.
754 EXPECT_NEAR(mean, sample_mean, 0.15 * mean);
755 EXPECT_NEAR(stddev, sample_stddev, 0.15 * stddev);
756
757 ss_.set_delay_mean(0);
758 ss_.set_delay_stddev(0);
759 ss_.UpdateDelayDistribution();
760 }
761
762 // Test cross-family communication between a client bound to client_addr and a
763 // server bound to server_addr. shouldSucceed indicates if communication is
764 // expected to work or not.
765 void CrossFamilyConnectionTest(const SocketAddress& client_addr,
766 const SocketAddress& server_addr,
767 bool shouldSucceed) {
768 StreamSink sink;
769 SocketAddress accept_address;
770 const SocketAddress kEmptyAddr;
771
772 // Client gets a IPv4 address
773 std::unique_ptr<AsyncSocket> client =
774 WrapUnique(ss_.CreateAsyncSocket(client_addr.family(), SOCK_STREAM));
775 sink.Monitor(client.get());
776 EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED);
777 EXPECT_EQ(client->GetLocalAddress(), kEmptyAddr);
778 client->Bind(client_addr);
779
780 // Server gets a non-mapped non-any IPv6 address.
781 // IPv4 sockets should not be able to connect to this.
782 std::unique_ptr<AsyncSocket> server =
783 WrapUnique(ss_.CreateAsyncSocket(server_addr.family(), SOCK_STREAM));
784 sink.Monitor(server.get());
785 server->Bind(server_addr);
786 server->Listen(5);
787
788 if (shouldSucceed) {
789 EXPECT_EQ(0, client->Connect(server->GetLocalAddress()));
790 ss_.ProcessMessagesUntilIdle();
791 EXPECT_TRUE(sink.Check(server.get(), SSE_READ));
792 std::unique_ptr<Socket> accepted =
793 WrapUnique(server->Accept(&accept_address));
794 EXPECT_TRUE(nullptr != accepted);
795 EXPECT_NE(kEmptyAddr, accept_address);
796 ss_.ProcessMessagesUntilIdle();
797 EXPECT_TRUE(sink.Check(client.get(), SSE_OPEN));
798 EXPECT_EQ(client->GetRemoteAddress(), server->GetLocalAddress());
799 } else {
800 // Check that the connection failed.
801 EXPECT_EQ(-1, client->Connect(server->GetLocalAddress()));
802 ss_.ProcessMessagesUntilIdle();
803
804 EXPECT_FALSE(sink.Check(server.get(), SSE_READ));
805 EXPECT_TRUE(nullptr == server->Accept(&accept_address));
806 EXPECT_EQ(accept_address, kEmptyAddr);
807 EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED);
808 EXPECT_FALSE(sink.Check(client.get(), SSE_OPEN));
809 EXPECT_EQ(client->GetRemoteAddress(), kEmptyAddr);
810 }
811 }
812
813 // Test cross-family datagram sending between a client bound to client_addr
814 // and a server bound to server_addr. shouldSucceed indicates if sending is
815 // expected to succeed or not.
816 void CrossFamilyDatagramTest(const SocketAddress& client_addr,
817 const SocketAddress& server_addr,
818 bool shouldSucceed) {
819 AsyncSocket* socket = ss_.CreateAsyncSocket(SOCK_DGRAM);
820 socket->Bind(server_addr);
821 SocketAddress bound_server_addr = socket->GetLocalAddress();
822 auto client1 = MakeUnique<TestClient>(MakeUnique<AsyncUDPSocket>(socket),
823 &fake_clock_);
824
825 AsyncSocket* socket2 = ss_.CreateAsyncSocket(SOCK_DGRAM);
826 socket2->Bind(client_addr);
827 auto client2 = MakeUnique<TestClient>(MakeUnique<AsyncUDPSocket>(socket2),
828 &fake_clock_);
829 SocketAddress client2_addr;
830
831 if (shouldSucceed) {
832 EXPECT_EQ(3, client2->SendTo("foo", 3, bound_server_addr));
833 EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &client2_addr));
834 SocketAddress client1_addr;
835 EXPECT_EQ(6, client1->SendTo("bizbaz", 6, client2_addr));
836 EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &client1_addr));
837 EXPECT_EQ(client1_addr, bound_server_addr);
838 } else {
839 EXPECT_EQ(-1, client2->SendTo("foo", 3, bound_server_addr));
840 EXPECT_TRUE(client1->CheckNoPacket());
841 }
842 }
843
844 protected:
845 rtc::ScopedFakeClock fake_clock_;
846 VirtualSocketServer ss_;
847 AutoSocketServerThread thread_;
848 const SocketAddress kIPv4AnyAddress;
849 const SocketAddress kIPv6AnyAddress;
850 };
851
852 TEST_F(VirtualSocketServerTest, basic_v4) {
853 SocketAddress ipv4_test_addr(IPAddress(INADDR_ANY), 5000);
854 BasicTest(ipv4_test_addr);
855 }
856
857 TEST_F(VirtualSocketServerTest, basic_v6) {
858 SocketAddress ipv6_test_addr(IPAddress(in6addr_any), 5000);
859 BasicTest(ipv6_test_addr);
860 }
861
862 TEST_F(VirtualSocketServerTest, TestDefaultRoute_v4) {
863 IPAddress ipv4_default_addr(0x01020304);
864 TestDefaultRoute(ipv4_default_addr);
865 }
866
867 TEST_F(VirtualSocketServerTest, TestDefaultRoute_v6) {
868 IPAddress ipv6_default_addr;
869 EXPECT_TRUE(
870 IPFromString("2401:fa00:4:1000:be30:5bff:fee5:c3", &ipv6_default_addr));
871 TestDefaultRoute(ipv6_default_addr);
872 }
873
874 TEST_F(VirtualSocketServerTest, connect_v4) {
875 ConnectTest(kIPv4AnyAddress);
876 }
877
878 TEST_F(VirtualSocketServerTest, connect_v6) {
879 ConnectTest(kIPv6AnyAddress);
880 }
881
882 TEST_F(VirtualSocketServerTest, connect_to_non_listener_v4) {
883 ConnectToNonListenerTest(kIPv4AnyAddress);
884 }
885
886 TEST_F(VirtualSocketServerTest, connect_to_non_listener_v6) {
887 ConnectToNonListenerTest(kIPv6AnyAddress);
888 }
889
890 TEST_F(VirtualSocketServerTest, close_during_connect_v4) {
891 CloseDuringConnectTest(kIPv4AnyAddress);
892 }
893
894 TEST_F(VirtualSocketServerTest, close_during_connect_v6) {
895 CloseDuringConnectTest(kIPv6AnyAddress);
896 }
897
898 TEST_F(VirtualSocketServerTest, close_v4) {
899 CloseTest(kIPv4AnyAddress);
900 }
901
902 TEST_F(VirtualSocketServerTest, close_v6) {
903 CloseTest(kIPv6AnyAddress);
904 }
905
906 TEST_F(VirtualSocketServerTest, tcp_send_v4) {
907 TcpSendTest(kIPv4AnyAddress);
908 }
909
910 TEST_F(VirtualSocketServerTest, tcp_send_v6) {
911 TcpSendTest(kIPv6AnyAddress);
912 }
913
914 TEST_F(VirtualSocketServerTest, TcpSendsPacketsInOrder_v4) {
915 TcpSendsPacketsInOrderTest(kIPv4AnyAddress);
916 }
917
918 TEST_F(VirtualSocketServerTest, TcpSendsPacketsInOrder_v6) {
919 TcpSendsPacketsInOrderTest(kIPv6AnyAddress);
920 }
921
922 TEST_F(VirtualSocketServerTest, bandwidth_v4) {
923 BandwidthTest(kIPv4AnyAddress);
924 }
925
926 TEST_F(VirtualSocketServerTest, bandwidth_v6) {
927 BandwidthTest(kIPv6AnyAddress);
928 }
929
930 TEST_F(VirtualSocketServerTest, delay_v4) {
931 DelayTest(kIPv4AnyAddress);
932 }
933
934 TEST_F(VirtualSocketServerTest, delay_v6) {
935 DelayTest(kIPv6AnyAddress);
936 }
937
938 // Works, receiving socket sees 127.0.0.2.
939 TEST_F(VirtualSocketServerTest, CanConnectFromMappedIPv6ToIPv4Any) {
940 CrossFamilyConnectionTest(SocketAddress("::ffff:127.0.0.2", 0),
941 SocketAddress("0.0.0.0", 5000),
942 true);
943 }
944
945 // Fails.
946 TEST_F(VirtualSocketServerTest, CantConnectFromUnMappedIPv6ToIPv4Any) {
947 CrossFamilyConnectionTest(SocketAddress("::2", 0),
948 SocketAddress("0.0.0.0", 5000),
949 false);
950 }
951
952 // Fails.
953 TEST_F(VirtualSocketServerTest, CantConnectFromUnMappedIPv6ToMappedIPv6) {
954 CrossFamilyConnectionTest(SocketAddress("::2", 0),
955 SocketAddress("::ffff:127.0.0.1", 5000),
956 false);
957 }
958
959 // Works. receiving socket sees ::ffff:127.0.0.2.
960 TEST_F(VirtualSocketServerTest, CanConnectFromIPv4ToIPv6Any) {
961 CrossFamilyConnectionTest(SocketAddress("127.0.0.2", 0),
962 SocketAddress("::", 5000),
963 true);
964 }
965
966 // Fails.
967 TEST_F(VirtualSocketServerTest, CantConnectFromIPv4ToUnMappedIPv6) {
968 CrossFamilyConnectionTest(SocketAddress("127.0.0.2", 0),
969 SocketAddress("::1", 5000),
970 false);
971 }
972
973 // Works. Receiving socket sees ::ffff:127.0.0.1.
974 TEST_F(VirtualSocketServerTest, CanConnectFromIPv4ToMappedIPv6) {
975 CrossFamilyConnectionTest(SocketAddress("127.0.0.1", 0),
976 SocketAddress("::ffff:127.0.0.2", 5000),
977 true);
978 }
979
980 // Works, receiving socket sees a result from GetNextIP.
981 TEST_F(VirtualSocketServerTest, CanConnectFromUnboundIPv6ToIPv4Any) {
982 CrossFamilyConnectionTest(SocketAddress("::", 0),
983 SocketAddress("0.0.0.0", 5000),
984 true);
985 }
986
987 // Works, receiving socket sees whatever GetNextIP gave the client.
988 TEST_F(VirtualSocketServerTest, CanConnectFromUnboundIPv4ToIPv6Any) {
989 CrossFamilyConnectionTest(SocketAddress("0.0.0.0", 0),
990 SocketAddress("::", 5000),
991 true);
992 }
993
994 TEST_F(VirtualSocketServerTest, CanSendDatagramFromUnboundIPv4ToIPv6Any) {
995 CrossFamilyDatagramTest(SocketAddress("0.0.0.0", 0),
996 SocketAddress("::", 5000),
997 true);
998 }
999
1000 TEST_F(VirtualSocketServerTest, CanSendDatagramFromMappedIPv6ToIPv4Any) {
1001 CrossFamilyDatagramTest(SocketAddress("::ffff:127.0.0.1", 0),
1002 SocketAddress("0.0.0.0", 5000),
1003 true);
1004 }
1005
1006 TEST_F(VirtualSocketServerTest, CantSendDatagramFromUnMappedIPv6ToIPv4Any) {
1007 CrossFamilyDatagramTest(SocketAddress("::2", 0),
1008 SocketAddress("0.0.0.0", 5000),
1009 false);
1010 }
1011
1012 TEST_F(VirtualSocketServerTest, CantSendDatagramFromUnMappedIPv6ToMappedIPv6) {
1013 CrossFamilyDatagramTest(SocketAddress("::2", 0),
1014 SocketAddress("::ffff:127.0.0.1", 5000),
1015 false);
1016 }
1017
1018 TEST_F(VirtualSocketServerTest, CanSendDatagramFromIPv4ToIPv6Any) {
1019 CrossFamilyDatagramTest(SocketAddress("127.0.0.2", 0),
1020 SocketAddress("::", 5000),
1021 true);
1022 }
1023
1024 TEST_F(VirtualSocketServerTest, CantSendDatagramFromIPv4ToUnMappedIPv6) {
1025 CrossFamilyDatagramTest(SocketAddress("127.0.0.2", 0),
1026 SocketAddress("::1", 5000),
1027 false);
1028 }
1029
1030 TEST_F(VirtualSocketServerTest, CanSendDatagramFromIPv4ToMappedIPv6) {
1031 CrossFamilyDatagramTest(SocketAddress("127.0.0.1", 0),
1032 SocketAddress("::ffff:127.0.0.2", 5000),
1033 true);
1034 }
1035
1036 TEST_F(VirtualSocketServerTest, CanSendDatagramFromUnboundIPv6ToIPv4Any) {
1037 CrossFamilyDatagramTest(SocketAddress("::", 0),
1038 SocketAddress("0.0.0.0", 5000),
1039 true);
1040 }
1041
1042 TEST_F(VirtualSocketServerTest, SetSendingBlockedWithUdpSocket) {
1043 AsyncSocket* socket1 =
1044 ss_.CreateAsyncSocket(kIPv4AnyAddress.family(), SOCK_DGRAM);
1045 std::unique_ptr<AsyncSocket> socket2 =
1046 WrapUnique(ss_.CreateAsyncSocket(kIPv4AnyAddress.family(), SOCK_DGRAM));
1047 socket1->Bind(kIPv4AnyAddress);
1048 socket2->Bind(kIPv4AnyAddress);
1049 auto client1 =
1050 MakeUnique<TestClient>(MakeUnique<AsyncUDPSocket>(socket1), &fake_clock_);
1051
1052 ss_.SetSendingBlocked(true);
1053 EXPECT_EQ(-1, client1->SendTo("foo", 3, socket2->GetLocalAddress()));
1054 EXPECT_TRUE(socket1->IsBlocking());
1055 EXPECT_EQ(0, client1->ready_to_send_count());
1056
1057 ss_.SetSendingBlocked(false);
1058 EXPECT_EQ(1, client1->ready_to_send_count());
1059 EXPECT_EQ(3, client1->SendTo("foo", 3, socket2->GetLocalAddress()));
1060 }
1061
1062 TEST_F(VirtualSocketServerTest, SetSendingBlockedWithTcpSocket) {
1063 constexpr size_t kBufferSize = 1024;
1064 ss_.set_send_buffer_capacity(kBufferSize);
1065 ss_.set_recv_buffer_capacity(kBufferSize);
1066
1067 StreamSink sink;
1068 std::unique_ptr<AsyncSocket> socket1 =
1069 WrapUnique(ss_.CreateAsyncSocket(kIPv4AnyAddress.family(), SOCK_STREAM));
1070 std::unique_ptr<AsyncSocket> socket2 =
1071 WrapUnique(ss_.CreateAsyncSocket(kIPv4AnyAddress.family(), SOCK_STREAM));
1072 sink.Monitor(socket1.get());
1073 sink.Monitor(socket2.get());
1074 socket1->Bind(kIPv4AnyAddress);
1075 socket2->Bind(kIPv4AnyAddress);
1076
1077 // Connect sockets.
1078 EXPECT_EQ(0, socket1->Connect(socket2->GetLocalAddress()));
1079 EXPECT_EQ(0, socket2->Connect(socket1->GetLocalAddress()));
1080 ss_.ProcessMessagesUntilIdle();
1081
1082 char data[kBufferSize] = {};
1083
1084 // First Send call will fill the send buffer but not send anything.
1085 ss_.SetSendingBlocked(true);
1086 EXPECT_EQ(static_cast<int>(kBufferSize), socket1->Send(data, kBufferSize));
1087 ss_.ProcessMessagesUntilIdle();
1088 EXPECT_FALSE(sink.Check(socket1.get(), SSE_WRITE));
1089 EXPECT_FALSE(sink.Check(socket2.get(), SSE_READ));
1090 EXPECT_FALSE(socket1->IsBlocking());
1091
1092 // Since the send buffer is full, next Send will result in EWOULDBLOCK.
1093 EXPECT_EQ(-1, socket1->Send(data, kBufferSize));
1094 EXPECT_FALSE(sink.Check(socket1.get(), SSE_WRITE));
1095 EXPECT_FALSE(sink.Check(socket2.get(), SSE_READ));
1096 EXPECT_TRUE(socket1->IsBlocking());
1097
1098 // When sending is unblocked, the buffered data should be sent and
1099 // SignalWriteEvent should fire.
1100 ss_.SetSendingBlocked(false);
1101 ss_.ProcessMessagesUntilIdle();
1102 EXPECT_TRUE(sink.Check(socket1.get(), SSE_WRITE));
1103 EXPECT_TRUE(sink.Check(socket2.get(), SSE_READ));
1104 }
1105
1106 TEST_F(VirtualSocketServerTest, CreatesStandardDistribution) {
1107 const uint32_t kTestMean[] = {10, 100, 333, 1000};
1108 const double kTestDev[] = { 0.25, 0.1, 0.01 };
1109 // TODO(deadbeef): The current code only works for 1000 data points or more.
1110 const uint32_t kTestSamples[] = {/*10, 100,*/ 1000};
1111 for (size_t midx = 0; midx < arraysize(kTestMean); ++midx) {
1112 for (size_t didx = 0; didx < arraysize(kTestDev); ++didx) {
1113 for (size_t sidx = 0; sidx < arraysize(kTestSamples); ++sidx) {
1114 ASSERT_LT(0u, kTestSamples[sidx]);
1115 const uint32_t kStdDev =
1116 static_cast<uint32_t>(kTestDev[didx] * kTestMean[midx]);
1117 VirtualSocketServer::Function* f =
1118 VirtualSocketServer::CreateDistribution(kTestMean[midx],
1119 kStdDev,
1120 kTestSamples[sidx]);
1121 ASSERT_TRUE(nullptr != f);
1122 ASSERT_EQ(kTestSamples[sidx], f->size());
1123 double sum = 0;
1124 for (uint32_t i = 0; i < f->size(); ++i) {
1125 sum += (*f)[i].second;
1126 }
1127 const double mean = sum / f->size();
1128 double sum_sq_dev = 0;
1129 for (uint32_t i = 0; i < f->size(); ++i) {
1130 double dev = (*f)[i].second - mean;
1131 sum_sq_dev += dev * dev;
1132 }
1133 const double stddev = sqrt(sum_sq_dev / f->size());
1134 EXPECT_NEAR(kTestMean[midx], mean, 0.1 * kTestMean[midx])
1135 << "M=" << kTestMean[midx]
1136 << " SD=" << kStdDev
1137 << " N=" << kTestSamples[sidx];
1138 EXPECT_NEAR(kStdDev, stddev, 0.1 * kStdDev)
1139 << "M=" << kTestMean[midx]
1140 << " SD=" << kStdDev
1141 << " N=" << kTestSamples[sidx];
1142 delete f;
1143 }
1144 }
1145 }
1146 }
OLDNEW
« no previous file with comments | « webrtc/base/unixfilesystem.cc ('k') | webrtc/base/virtualsocketserver.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698