Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(211)

Side by Side Diff: webrtc/base/timestampaligner_unittest.cc

Issue 2877023002: Move webrtc/{base => rtc_base} (Closed)
Patch Set: update presubmit.py and DEPS include rules Created 3 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « webrtc/base/timestampaligner.cc ('k') | webrtc/base/timeutils.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 /*
2 * Copyright 2016 The WebRTC Project Authors. All rights reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <math.h>
12
13 #include <algorithm>
14 #include <limits>
15
16 #include "webrtc/base/gunit.h"
17 #include "webrtc/base/random.h"
18 #include "webrtc/base/timestampaligner.h"
19
20 namespace rtc {
21
22 namespace {
23 // Computes the difference x_k - mean(x), when x_k is the linear sequence x_k =
24 // k, and the "mean" is plain mean for the first |window_size| samples, followed
25 // by exponential averaging with weight 1 / |window_size| for each new sample.
26 // This is needed to predict the effect of camera clock drift on the timestamp
27 // translation. See the comment on TimestampAligner::UpdateOffset for more
28 // context.
29 double MeanTimeDifference(int nsamples, int window_size) {
30 if (nsamples <= window_size) {
31 // Plain averaging.
32 return nsamples / 2.0;
33 } else {
34 // Exponential convergence towards
35 // interval_error * (window_size - 1)
36 double alpha = 1.0 - 1.0 / window_size;
37
38 return ((window_size - 1) -
39 (window_size / 2.0 - 1) * pow(alpha, nsamples - window_size));
40 }
41 }
42
43 class TimestampAlignerForTest : public TimestampAligner {
44 // Make internal methods accessible to testing.
45 public:
46 using TimestampAligner::UpdateOffset;
47 using TimestampAligner::ClipTimestamp;
48 };
49
50 void TestTimestampFilter(double rel_freq_error) {
51 TimestampAlignerForTest timestamp_aligner_for_test;
52 TimestampAligner timestamp_aligner;
53 const int64_t kEpoch = 10000;
54 const int64_t kJitterUs = 5000;
55 const int64_t kIntervalUs = 33333; // 30 FPS
56 const int kWindowSize = 100;
57 const int kNumFrames = 3 * kWindowSize;
58
59 int64_t interval_error_us = kIntervalUs * rel_freq_error;
60 int64_t system_start_us = rtc::TimeMicros();
61 webrtc::Random random(17);
62
63 int64_t prev_translated_time_us = system_start_us;
64
65 for (int i = 0; i < kNumFrames; i++) {
66 // Camera time subject to drift.
67 int64_t camera_time_us = kEpoch + i * (kIntervalUs + interval_error_us);
68 int64_t system_time_us = system_start_us + i * kIntervalUs;
69 // And system time readings are subject to jitter.
70 int64_t system_measured_us = system_time_us + random.Rand(kJitterUs);
71
72 int64_t offset_us = timestamp_aligner_for_test.UpdateOffset(
73 camera_time_us, system_measured_us);
74
75 int64_t filtered_time_us = camera_time_us + offset_us;
76 int64_t translated_time_us = timestamp_aligner_for_test.ClipTimestamp(
77 filtered_time_us, system_measured_us);
78
79 // Check that we get identical result from the all-in-one helper method.
80 ASSERT_EQ(translated_time_us, timestamp_aligner.TranslateTimestamp(
81 camera_time_us, system_measured_us));
82
83 EXPECT_LE(translated_time_us, system_measured_us);
84 EXPECT_GE(translated_time_us,
85 prev_translated_time_us + rtc::kNumMicrosecsPerMillisec);
86
87 // The relative frequency error contributes to the expected error
88 // by a factor which is the difference between the current time
89 // and the average of earlier sample times.
90 int64_t expected_error_us =
91 kJitterUs / 2 +
92 rel_freq_error * kIntervalUs * MeanTimeDifference(i, kWindowSize);
93
94 int64_t bias_us = filtered_time_us - translated_time_us;
95 EXPECT_GE(bias_us, 0);
96
97 if (i == 0) {
98 EXPECT_EQ(translated_time_us, system_measured_us);
99 } else {
100 EXPECT_NEAR(filtered_time_us, system_time_us + expected_error_us,
101 2.0 * kJitterUs / sqrt(std::max(i, kWindowSize)));
102 }
103 // If the camera clock runs too fast (rel_freq_error > 0.0), The
104 // bias is expected to roughly cancel the expected error from the
105 // clock drift, as this grows. Otherwise, it reflects the
106 // measurement noise. The tolerances here were selected after some
107 // trial and error.
108 if (i < 10 || rel_freq_error <= 0.0) {
109 EXPECT_LE(bias_us, 3000);
110 } else {
111 EXPECT_NEAR(bias_us, expected_error_us, 1500);
112 }
113 prev_translated_time_us = translated_time_us;
114 }
115 }
116
117 } // Anonymous namespace
118
119 TEST(TimestampAlignerTest, AttenuateTimestampJitterNoDrift) {
120 TestTimestampFilter(0.0);
121 }
122
123 // 100 ppm is a worst case for a reasonable crystal.
124 TEST(TimestampAlignerTest, AttenuateTimestampJitterSmallPosDrift) {
125 TestTimestampFilter(0.0001);
126 }
127
128 TEST(TimestampAlignerTest, AttenuateTimestampJitterSmallNegDrift) {
129 TestTimestampFilter(-0.0001);
130 }
131
132 // 3000 ppm, 3 ms / s, is the worst observed drift, see
133 // https://bugs.chromium.org/p/webrtc/issues/detail?id=5456
134 TEST(TimestampAlignerTest, AttenuateTimestampJitterLargePosDrift) {
135 TestTimestampFilter(0.003);
136 }
137
138 TEST(TimestampAlignerTest, AttenuateTimestampJitterLargeNegDrift) {
139 TestTimestampFilter(-0.003);
140 }
141
142 // Exhibits a mostly hypothetical problem, where certain inputs to the
143 // TimestampAligner.UpdateOffset filter result in non-monotonous
144 // translated timestamps. This test verifies that the ClipTimestamp
145 // logic handles this case correctly.
146 TEST(TimestampAlignerTest, ClipToMonotonous) {
147 TimestampAlignerForTest timestamp_aligner;
148
149 // For system time stamps { 0, s1, s1 + s2 }, and camera timestamps
150 // {0, c1, c1 + c2}, we exhibit non-monotonous behaviour if and only
151 // if c1 > s1 + 2 s2 + 4 c2.
152 const int kNumSamples = 3;
153 const int64_t camera_time_us[kNumSamples] = {0, 80000, 90001};
154 const int64_t system_time_us[kNumSamples] = {0, 10000, 20000};
155 const int64_t expected_offset_us[kNumSamples] = {0, -35000, -46667};
156
157 // Non-monotonic translated timestamps can happen when only for
158 // translated timestamps in the future. Which is tolerated if
159 // |timestamp_aligner.clip_bias_us| is large enough. Instead of
160 // changing that private member for this test, just add the bias to
161 // |system_time_us| when calling ClipTimestamp.
162 const int64_t kClipBiasUs = 100000;
163
164 bool did_clip = false;
165 int64_t prev_timestamp_us = std::numeric_limits<int64_t>::min();
166 for (int i = 0; i < kNumSamples; i++) {
167 int64_t offset_us =
168 timestamp_aligner.UpdateOffset(camera_time_us[i], system_time_us[i]);
169 EXPECT_EQ(offset_us, expected_offset_us[i]);
170
171 int64_t translated_timestamp_us = camera_time_us[i] + offset_us;
172 int64_t clip_timestamp_us = timestamp_aligner.ClipTimestamp(
173 translated_timestamp_us, system_time_us[i] + kClipBiasUs);
174 if (translated_timestamp_us <= prev_timestamp_us) {
175 did_clip = true;
176 EXPECT_EQ(clip_timestamp_us,
177 prev_timestamp_us + rtc::kNumMicrosecsPerMillisec);
178 } else {
179 // No change from clipping.
180 EXPECT_EQ(clip_timestamp_us, translated_timestamp_us);
181 }
182 prev_timestamp_us = clip_timestamp_us;
183 }
184 EXPECT_TRUE(did_clip);
185 }
186
187 } // namespace rtc
OLDNEW
« no previous file with comments | « webrtc/base/timestampaligner.cc ('k') | webrtc/base/timeutils.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698