OLD | NEW |
| (Empty) |
1 /* | |
2 * Copyright 2016 The WebRTC Project Authors. All rights reserved. | |
3 * | |
4 * Use of this source code is governed by a BSD-style license | |
5 * that can be found in the LICENSE file in the root of the source | |
6 * tree. An additional intellectual property rights grant can be found | |
7 * in the file PATENTS. All contributing project authors may | |
8 * be found in the AUTHORS file in the root of the source tree. | |
9 */ | |
10 | |
11 #include "webrtc/base/task_queue.h" | |
12 | |
13 #include <mmsystem.h> | |
14 #include <string.h> | |
15 | |
16 #include <algorithm> | |
17 #include <queue> | |
18 | |
19 #include "webrtc/base/arraysize.h" | |
20 #include "webrtc/base/checks.h" | |
21 #include "webrtc/base/logging.h" | |
22 #include "webrtc/base/safe_conversions.h" | |
23 #include "webrtc/base/timeutils.h" | |
24 | |
25 namespace rtc { | |
26 namespace { | |
27 #define WM_RUN_TASK WM_USER + 1 | |
28 #define WM_QUEUE_DELAYED_TASK WM_USER + 2 | |
29 | |
30 using Priority = TaskQueue::Priority; | |
31 | |
32 DWORD g_queue_ptr_tls = 0; | |
33 | |
34 BOOL CALLBACK InitializeTls(PINIT_ONCE init_once, void* param, void** context) { | |
35 g_queue_ptr_tls = TlsAlloc(); | |
36 return TRUE; | |
37 } | |
38 | |
39 DWORD GetQueuePtrTls() { | |
40 static INIT_ONCE init_once = INIT_ONCE_STATIC_INIT; | |
41 ::InitOnceExecuteOnce(&init_once, InitializeTls, nullptr, nullptr); | |
42 return g_queue_ptr_tls; | |
43 } | |
44 | |
45 struct ThreadStartupData { | |
46 Event* started; | |
47 void* thread_context; | |
48 }; | |
49 | |
50 void CALLBACK InitializeQueueThread(ULONG_PTR param) { | |
51 MSG msg; | |
52 ::PeekMessage(&msg, nullptr, WM_USER, WM_USER, PM_NOREMOVE); | |
53 ThreadStartupData* data = reinterpret_cast<ThreadStartupData*>(param); | |
54 ::TlsSetValue(GetQueuePtrTls(), data->thread_context); | |
55 data->started->Set(); | |
56 } | |
57 | |
58 ThreadPriority TaskQueuePriorityToThreadPriority(Priority priority) { | |
59 switch (priority) { | |
60 case Priority::HIGH: | |
61 return kRealtimePriority; | |
62 case Priority::LOW: | |
63 return kLowPriority; | |
64 case Priority::NORMAL: | |
65 return kNormalPriority; | |
66 default: | |
67 RTC_NOTREACHED(); | |
68 break; | |
69 } | |
70 return kNormalPriority; | |
71 } | |
72 | |
73 int64_t GetTick() { | |
74 static const UINT kPeriod = 1; | |
75 bool high_res = (timeBeginPeriod(kPeriod) == TIMERR_NOERROR); | |
76 int64_t ret = TimeMillis(); | |
77 if (high_res) | |
78 timeEndPeriod(kPeriod); | |
79 return ret; | |
80 } | |
81 | |
82 class DelayedTaskInfo { | |
83 public: | |
84 // Default ctor needed to support priority_queue::pop(). | |
85 DelayedTaskInfo() {} | |
86 DelayedTaskInfo(uint32_t milliseconds, std::unique_ptr<QueuedTask> task) | |
87 : due_time_(GetTick() + milliseconds), task_(std::move(task)) {} | |
88 DelayedTaskInfo(DelayedTaskInfo&&) = default; | |
89 | |
90 // Implement for priority_queue. | |
91 bool operator>(const DelayedTaskInfo& other) const { | |
92 return due_time_ > other.due_time_; | |
93 } | |
94 | |
95 // Required by priority_queue::pop(). | |
96 DelayedTaskInfo& operator=(DelayedTaskInfo&& other) = default; | |
97 | |
98 // See below for why this method is const. | |
99 void Run() const { | |
100 RTC_DCHECK(due_time_); | |
101 task_->Run() ? task_.reset() : static_cast<void>(task_.release()); | |
102 } | |
103 | |
104 int64_t due_time() const { return due_time_; } | |
105 | |
106 private: | |
107 int64_t due_time_ = 0; // Absolute timestamp in milliseconds. | |
108 | |
109 // |task| needs to be mutable because std::priority_queue::top() returns | |
110 // a const reference and a key in an ordered queue must not be changed. | |
111 // There are two basic workarounds, one using const_cast, which would also | |
112 // make the key (|due_time|), non-const and the other is to make the non-key | |
113 // (|task|), mutable. | |
114 // Because of this, the |task| variable is made private and can only be | |
115 // mutated by calling the |Run()| method. | |
116 mutable std::unique_ptr<QueuedTask> task_; | |
117 }; | |
118 | |
119 class MultimediaTimer { | |
120 public: | |
121 // Note: We create an event that requires manual reset. | |
122 MultimediaTimer() : event_(::CreateEvent(nullptr, true, false, nullptr)) {} | |
123 | |
124 ~MultimediaTimer() { | |
125 Cancel(); | |
126 ::CloseHandle(event_); | |
127 } | |
128 | |
129 bool StartOneShotTimer(UINT delay_ms) { | |
130 RTC_DCHECK_EQ(0, timer_id_); | |
131 RTC_DCHECK(event_ != nullptr); | |
132 timer_id_ = | |
133 ::timeSetEvent(delay_ms, 0, reinterpret_cast<LPTIMECALLBACK>(event_), 0, | |
134 TIME_ONESHOT | TIME_CALLBACK_EVENT_SET); | |
135 return timer_id_ != 0; | |
136 } | |
137 | |
138 void Cancel() { | |
139 ::ResetEvent(event_); | |
140 if (timer_id_) { | |
141 ::timeKillEvent(timer_id_); | |
142 timer_id_ = 0; | |
143 } | |
144 } | |
145 | |
146 HANDLE* event_for_wait() { return &event_; } | |
147 | |
148 private: | |
149 HANDLE event_ = nullptr; | |
150 MMRESULT timer_id_ = 0; | |
151 | |
152 RTC_DISALLOW_COPY_AND_ASSIGN(MultimediaTimer); | |
153 }; | |
154 | |
155 } // namespace | |
156 | |
157 class TaskQueue::ThreadState { | |
158 public: | |
159 explicit ThreadState(HANDLE in_queue) : in_queue_(in_queue) {} | |
160 ~ThreadState() {} | |
161 | |
162 void RunThreadMain(); | |
163 | |
164 private: | |
165 bool ProcessQueuedMessages(); | |
166 void RunDueTasks(); | |
167 void ScheduleNextTimer(); | |
168 void CancelTimers(); | |
169 | |
170 // Since priority_queue<> by defult orders items in terms of | |
171 // largest->smallest, using std::less<>, and we want smallest->largest, | |
172 // we would like to use std::greater<> here. Alas it's only available in | |
173 // C++14 and later, so we roll our own compare template that that relies on | |
174 // operator<(). | |
175 template <typename T> | |
176 struct greater { | |
177 bool operator()(const T& l, const T& r) { return l > r; } | |
178 }; | |
179 | |
180 MultimediaTimer timer_; | |
181 std::priority_queue<DelayedTaskInfo, | |
182 std::vector<DelayedTaskInfo>, | |
183 greater<DelayedTaskInfo>> | |
184 timer_tasks_; | |
185 UINT_PTR timer_id_ = 0; | |
186 HANDLE in_queue_; | |
187 }; | |
188 | |
189 TaskQueue::TaskQueue(const char* queue_name, Priority priority /*= NORMAL*/) | |
190 : thread_(&TaskQueue::ThreadMain, | |
191 this, | |
192 queue_name, | |
193 TaskQueuePriorityToThreadPriority(priority)), | |
194 in_queue_(::CreateEvent(nullptr, true, false, nullptr)) { | |
195 RTC_DCHECK(queue_name); | |
196 RTC_DCHECK(in_queue_); | |
197 thread_.Start(); | |
198 Event event(false, false); | |
199 ThreadStartupData startup = {&event, this}; | |
200 RTC_CHECK(thread_.QueueAPC(&InitializeQueueThread, | |
201 reinterpret_cast<ULONG_PTR>(&startup))); | |
202 event.Wait(Event::kForever); | |
203 } | |
204 | |
205 TaskQueue::~TaskQueue() { | |
206 RTC_DCHECK(!IsCurrent()); | |
207 while (!::PostThreadMessage(thread_.GetThreadRef(), WM_QUIT, 0, 0)) { | |
208 RTC_CHECK_EQ(ERROR_NOT_ENOUGH_QUOTA, ::GetLastError()); | |
209 Sleep(1); | |
210 } | |
211 thread_.Stop(); | |
212 ::CloseHandle(in_queue_); | |
213 } | |
214 | |
215 // static | |
216 TaskQueue* TaskQueue::Current() { | |
217 return static_cast<TaskQueue*>(::TlsGetValue(GetQueuePtrTls())); | |
218 } | |
219 | |
220 // static | |
221 bool TaskQueue::IsCurrent(const char* queue_name) { | |
222 TaskQueue* current = Current(); | |
223 return current && current->thread_.name().compare(queue_name) == 0; | |
224 } | |
225 | |
226 bool TaskQueue::IsCurrent() const { | |
227 return IsThreadRefEqual(thread_.GetThreadRef(), CurrentThreadRef()); | |
228 } | |
229 | |
230 void TaskQueue::PostTask(std::unique_ptr<QueuedTask> task) { | |
231 rtc::CritScope lock(&pending_lock_); | |
232 pending_.push(std::move(task)); | |
233 ::SetEvent(in_queue_); | |
234 } | |
235 | |
236 void TaskQueue::PostDelayedTask(std::unique_ptr<QueuedTask> task, | |
237 uint32_t milliseconds) { | |
238 if (!milliseconds) { | |
239 PostTask(std::move(task)); | |
240 return; | |
241 } | |
242 | |
243 // TODO(tommi): Avoid this allocation. It is currently here since | |
244 // the timestamp stored in the task info object, is a 64bit timestamp | |
245 // and WPARAM is 32bits in 32bit builds. Otherwise, we could pass the | |
246 // task pointer and timestamp as LPARAM and WPARAM. | |
247 auto* task_info = new DelayedTaskInfo(milliseconds, std::move(task)); | |
248 if (!::PostThreadMessage(thread_.GetThreadRef(), WM_QUEUE_DELAYED_TASK, 0, | |
249 reinterpret_cast<LPARAM>(task_info))) { | |
250 delete task_info; | |
251 } | |
252 } | |
253 | |
254 void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task, | |
255 std::unique_ptr<QueuedTask> reply, | |
256 TaskQueue* reply_queue) { | |
257 QueuedTask* task_ptr = task.release(); | |
258 QueuedTask* reply_task_ptr = reply.release(); | |
259 DWORD reply_thread_id = reply_queue->thread_.GetThreadRef(); | |
260 PostTask([task_ptr, reply_task_ptr, reply_thread_id]() { | |
261 if (task_ptr->Run()) | |
262 delete task_ptr; | |
263 // If the thread's message queue is full, we can't queue the task and will | |
264 // have to drop it (i.e. delete). | |
265 if (!::PostThreadMessage(reply_thread_id, WM_RUN_TASK, 0, | |
266 reinterpret_cast<LPARAM>(reply_task_ptr))) { | |
267 delete reply_task_ptr; | |
268 } | |
269 }); | |
270 } | |
271 | |
272 void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task, | |
273 std::unique_ptr<QueuedTask> reply) { | |
274 return PostTaskAndReply(std::move(task), std::move(reply), Current()); | |
275 } | |
276 | |
277 void TaskQueue::RunPendingTasks() { | |
278 while (true) { | |
279 std::unique_ptr<QueuedTask> task; | |
280 { | |
281 rtc::CritScope lock(&pending_lock_); | |
282 if (pending_.empty()) | |
283 break; | |
284 task = std::move(pending_.front()); | |
285 pending_.pop(); | |
286 } | |
287 | |
288 if (!task->Run()) | |
289 task.release(); | |
290 } | |
291 } | |
292 | |
293 // static | |
294 void TaskQueue::ThreadMain(void* context) { | |
295 ThreadState state(static_cast<TaskQueue*>(context)->in_queue_); | |
296 state.RunThreadMain(); | |
297 } | |
298 | |
299 void TaskQueue::ThreadState::RunThreadMain() { | |
300 HANDLE handles[2] = { *timer_.event_for_wait(), in_queue_ }; | |
301 while (true) { | |
302 // Make sure we do an alertable wait as that's required to allow APCs to run | |
303 // (e.g. required for InitializeQueueThread and stopping the thread in | |
304 // PlatformThread). | |
305 DWORD result = ::MsgWaitForMultipleObjectsEx( | |
306 arraysize(handles), handles, INFINITE, QS_ALLEVENTS, MWMO_ALERTABLE); | |
307 RTC_CHECK_NE(WAIT_FAILED, result); | |
308 if (result == (WAIT_OBJECT_0 + 2)) { | |
309 // There are messages in the message queue that need to be handled. | |
310 if (!ProcessQueuedMessages()) | |
311 break; | |
312 } | |
313 | |
314 if (result == WAIT_OBJECT_0 || (!timer_tasks_.empty() && | |
315 ::WaitForSingleObject(*timer_.event_for_wait(), 0) == WAIT_OBJECT_0)) { | |
316 // The multimedia timer was signaled. | |
317 timer_.Cancel(); | |
318 RunDueTasks(); | |
319 ScheduleNextTimer(); | |
320 } | |
321 | |
322 if (result == (WAIT_OBJECT_0 + 1)) { | |
323 ::ResetEvent(in_queue_); | |
324 TaskQueue::Current()->RunPendingTasks(); | |
325 } | |
326 } | |
327 } | |
328 | |
329 bool TaskQueue::ThreadState::ProcessQueuedMessages() { | |
330 MSG msg = {}; | |
331 // To protect against overly busy message queues, we limit the time | |
332 // we process tasks to a few milliseconds. If we don't do that, there's | |
333 // a chance that timer tasks won't ever run. | |
334 static const int kMaxTaskProcessingTimeMs = 500; | |
335 auto start = GetTick(); | |
336 while (::PeekMessage(&msg, nullptr, 0, 0, PM_REMOVE) && | |
337 msg.message != WM_QUIT) { | |
338 if (!msg.hwnd) { | |
339 switch (msg.message) { | |
340 // TODO(tommi): Stop using this way of queueing tasks. | |
341 case WM_RUN_TASK: { | |
342 QueuedTask* task = reinterpret_cast<QueuedTask*>(msg.lParam); | |
343 if (task->Run()) | |
344 delete task; | |
345 break; | |
346 } | |
347 case WM_QUEUE_DELAYED_TASK: { | |
348 std::unique_ptr<DelayedTaskInfo> info( | |
349 reinterpret_cast<DelayedTaskInfo*>(msg.lParam)); | |
350 bool need_to_schedule_timers = | |
351 timer_tasks_.empty() || | |
352 timer_tasks_.top().due_time() > info->due_time(); | |
353 timer_tasks_.emplace(std::move(*info.get())); | |
354 if (need_to_schedule_timers) { | |
355 CancelTimers(); | |
356 ScheduleNextTimer(); | |
357 } | |
358 break; | |
359 } | |
360 case WM_TIMER: { | |
361 RTC_DCHECK_EQ(timer_id_, msg.wParam); | |
362 ::KillTimer(nullptr, msg.wParam); | |
363 timer_id_ = 0; | |
364 RunDueTasks(); | |
365 ScheduleNextTimer(); | |
366 break; | |
367 } | |
368 default: | |
369 RTC_NOTREACHED(); | |
370 break; | |
371 } | |
372 } else { | |
373 ::TranslateMessage(&msg); | |
374 ::DispatchMessage(&msg); | |
375 } | |
376 | |
377 if (GetTick() > start + kMaxTaskProcessingTimeMs) | |
378 break; | |
379 } | |
380 return msg.message != WM_QUIT; | |
381 } | |
382 | |
383 void TaskQueue::ThreadState::RunDueTasks() { | |
384 RTC_DCHECK(!timer_tasks_.empty()); | |
385 auto now = GetTick(); | |
386 do { | |
387 const auto& top = timer_tasks_.top(); | |
388 if (top.due_time() > now) | |
389 break; | |
390 top.Run(); | |
391 timer_tasks_.pop(); | |
392 } while (!timer_tasks_.empty()); | |
393 } | |
394 | |
395 void TaskQueue::ThreadState::ScheduleNextTimer() { | |
396 RTC_DCHECK_EQ(timer_id_, 0); | |
397 if (timer_tasks_.empty()) | |
398 return; | |
399 | |
400 const auto& next_task = timer_tasks_.top(); | |
401 int64_t delay_ms = std::max(0ll, next_task.due_time() - GetTick()); | |
402 uint32_t milliseconds = rtc::dchecked_cast<uint32_t>(delay_ms); | |
403 if (!timer_.StartOneShotTimer(milliseconds)) | |
404 timer_id_ = ::SetTimer(nullptr, 0, milliseconds, nullptr); | |
405 } | |
406 | |
407 void TaskQueue::ThreadState::CancelTimers() { | |
408 timer_.Cancel(); | |
409 if (timer_id_) { | |
410 ::KillTimer(nullptr, timer_id_); | |
411 timer_id_ = 0; | |
412 } | |
413 } | |
414 | |
415 } // namespace rtc | |
OLD | NEW |