| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright 2016 The WebRTC Project Authors. All rights reserved. | 2 * Copyright 2016 The WebRTC Project Authors. All rights reserved. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
| 5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
| 6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
| 7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
| 8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
| 9 */ | 9 */ |
| 10 | 10 |
| 11 #ifndef WEBRTC_BASE_TASK_QUEUE_H_ | 11 #ifndef WEBRTC_BASE_TASK_QUEUE_H_ |
| 12 #define WEBRTC_BASE_TASK_QUEUE_H_ | 12 #define WEBRTC_BASE_TASK_QUEUE_H_ |
| 13 | 13 |
| 14 #include <list> | |
| 15 #include <memory> | |
| 16 #include <queue> | |
| 17 | 14 |
| 18 #if defined(WEBRTC_MAC) && !defined(WEBRTC_BUILD_LIBEVENT) | 15 // This header is deprecated and is just left here temporarily during |
| 19 #include <dispatch/dispatch.h> | 16 // refactoring. See https://bugs.webrtc.org/7634 for more details. |
| 20 #endif | 17 #include "webrtc/rtc_base/task_queue.h" |
| 21 | |
| 22 #include "webrtc/base/constructormagic.h" | |
| 23 #include "webrtc/base/criticalsection.h" | |
| 24 | |
| 25 #if defined(WEBRTC_WIN) || defined(WEBRTC_BUILD_LIBEVENT) | |
| 26 #include "webrtc/base/platform_thread.h" | |
| 27 #endif | |
| 28 | |
| 29 #if defined(WEBRTC_BUILD_LIBEVENT) | |
| 30 #include "webrtc/base/refcountedobject.h" | |
| 31 #include "webrtc/base/scoped_ref_ptr.h" | |
| 32 | |
| 33 struct event_base; | |
| 34 struct event; | |
| 35 #endif | |
| 36 | |
| 37 namespace rtc { | |
| 38 | |
| 39 // Base interface for asynchronously executed tasks. | |
| 40 // The interface basically consists of a single function, Run(), that executes | |
| 41 // on the target queue. For more details see the Run() method and TaskQueue. | |
| 42 class QueuedTask { | |
| 43 public: | |
| 44 QueuedTask() {} | |
| 45 virtual ~QueuedTask() {} | |
| 46 | |
| 47 // Main routine that will run when the task is executed on the desired queue. | |
| 48 // The task should return |true| to indicate that it should be deleted or | |
| 49 // |false| to indicate that the queue should consider ownership of the task | |
| 50 // having been transferred. Returning |false| can be useful if a task has | |
| 51 // re-posted itself to a different queue or is otherwise being re-used. | |
| 52 virtual bool Run() = 0; | |
| 53 | |
| 54 private: | |
| 55 RTC_DISALLOW_COPY_AND_ASSIGN(QueuedTask); | |
| 56 }; | |
| 57 | |
| 58 // Simple implementation of QueuedTask for use with rtc::Bind and lambdas. | |
| 59 template <class Closure> | |
| 60 class ClosureTask : public QueuedTask { | |
| 61 public: | |
| 62 explicit ClosureTask(const Closure& closure) : closure_(closure) {} | |
| 63 | |
| 64 private: | |
| 65 bool Run() override { | |
| 66 closure_(); | |
| 67 return true; | |
| 68 } | |
| 69 | |
| 70 Closure closure_; | |
| 71 }; | |
| 72 | |
| 73 // Extends ClosureTask to also allow specifying cleanup code. | |
| 74 // This is useful when using lambdas if guaranteeing cleanup, even if a task | |
| 75 // was dropped (queue is too full), is required. | |
| 76 template <class Closure, class Cleanup> | |
| 77 class ClosureTaskWithCleanup : public ClosureTask<Closure> { | |
| 78 public: | |
| 79 ClosureTaskWithCleanup(const Closure& closure, Cleanup cleanup) | |
| 80 : ClosureTask<Closure>(closure), cleanup_(cleanup) {} | |
| 81 ~ClosureTaskWithCleanup() { cleanup_(); } | |
| 82 | |
| 83 private: | |
| 84 Cleanup cleanup_; | |
| 85 }; | |
| 86 | |
| 87 // Convenience function to construct closures that can be passed directly | |
| 88 // to methods that support std::unique_ptr<QueuedTask> but not template | |
| 89 // based parameters. | |
| 90 template <class Closure> | |
| 91 static std::unique_ptr<QueuedTask> NewClosure(const Closure& closure) { | |
| 92 return std::unique_ptr<QueuedTask>(new ClosureTask<Closure>(closure)); | |
| 93 } | |
| 94 | |
| 95 template <class Closure, class Cleanup> | |
| 96 static std::unique_ptr<QueuedTask> NewClosure(const Closure& closure, | |
| 97 const Cleanup& cleanup) { | |
| 98 return std::unique_ptr<QueuedTask>( | |
| 99 new ClosureTaskWithCleanup<Closure, Cleanup>(closure, cleanup)); | |
| 100 } | |
| 101 | |
| 102 // Implements a task queue that asynchronously executes tasks in a way that | |
| 103 // guarantees that they're executed in FIFO order and that tasks never overlap. | |
| 104 // Tasks may always execute on the same worker thread and they may not. | |
| 105 // To DCHECK that tasks are executing on a known task queue, use IsCurrent(). | |
| 106 // | |
| 107 // Here are some usage examples: | |
| 108 // | |
| 109 // 1) Asynchronously running a lambda: | |
| 110 // | |
| 111 // class MyClass { | |
| 112 // ... | |
| 113 // TaskQueue queue_("MyQueue"); | |
| 114 // }; | |
| 115 // | |
| 116 // void MyClass::StartWork() { | |
| 117 // queue_.PostTask([]() { Work(); }); | |
| 118 // ... | |
| 119 // | |
| 120 // 2) Doing work asynchronously on a worker queue and providing a notification | |
| 121 // callback on the current queue, when the work has been done: | |
| 122 // | |
| 123 // void MyClass::StartWorkAndLetMeKnowWhenDone( | |
| 124 // std::unique_ptr<QueuedTask> callback) { | |
| 125 // DCHECK(TaskQueue::Current()) << "Need to be running on a queue"; | |
| 126 // queue_.PostTaskAndReply([]() { Work(); }, std::move(callback)); | |
| 127 // } | |
| 128 // ... | |
| 129 // my_class->StartWorkAndLetMeKnowWhenDone( | |
| 130 // NewClosure([]() { LOG(INFO) << "The work is done!";})); | |
| 131 // | |
| 132 // 3) Posting a custom task on a timer. The task posts itself again after | |
| 133 // every running: | |
| 134 // | |
| 135 // class TimerTask : public QueuedTask { | |
| 136 // public: | |
| 137 // TimerTask() {} | |
| 138 // private: | |
| 139 // bool Run() override { | |
| 140 // ++count_; | |
| 141 // TaskQueue::Current()->PostDelayedTask( | |
| 142 // std::unique_ptr<QueuedTask>(this), 1000); | |
| 143 // // Ownership has been transferred to the next occurance, | |
| 144 // // so return false to prevent from being deleted now. | |
| 145 // return false; | |
| 146 // } | |
| 147 // int count_ = 0; | |
| 148 // }; | |
| 149 // ... | |
| 150 // queue_.PostDelayedTask( | |
| 151 // std::unique_ptr<QueuedTask>(new TimerTask()), 1000); | |
| 152 // | |
| 153 // For more examples, see task_queue_unittests.cc. | |
| 154 // | |
| 155 // A note on destruction: | |
| 156 // | |
| 157 // When a TaskQueue is deleted, pending tasks will not be executed but they will | |
| 158 // be deleted. The deletion of tasks may happen asynchronously after the | |
| 159 // TaskQueue itself has been deleted or it may happen synchronously while the | |
| 160 // TaskQueue instance is being deleted. This may vary from one OS to the next | |
| 161 // so assumptions about lifetimes of pending tasks should not be made. | |
| 162 class LOCKABLE TaskQueue { | |
| 163 public: | |
| 164 // TaskQueue priority levels. On some platforms these will map to thread | |
| 165 // priorities, on others such as Mac and iOS, GCD queue priorities. | |
| 166 enum class Priority { | |
| 167 NORMAL = 0, | |
| 168 HIGH, | |
| 169 LOW, | |
| 170 }; | |
| 171 | |
| 172 explicit TaskQueue(const char* queue_name, | |
| 173 Priority priority = Priority::NORMAL); | |
| 174 ~TaskQueue(); | |
| 175 | |
| 176 static TaskQueue* Current(); | |
| 177 | |
| 178 // Used for DCHECKing the current queue. | |
| 179 static bool IsCurrent(const char* queue_name); | |
| 180 bool IsCurrent() const; | |
| 181 | |
| 182 // TODO(tommi): For better debuggability, implement RTC_FROM_HERE. | |
| 183 | |
| 184 // Ownership of the task is passed to PostTask. | |
| 185 void PostTask(std::unique_ptr<QueuedTask> task); | |
| 186 void PostTaskAndReply(std::unique_ptr<QueuedTask> task, | |
| 187 std::unique_ptr<QueuedTask> reply, | |
| 188 TaskQueue* reply_queue); | |
| 189 void PostTaskAndReply(std::unique_ptr<QueuedTask> task, | |
| 190 std::unique_ptr<QueuedTask> reply); | |
| 191 | |
| 192 // Schedules a task to execute a specified number of milliseconds from when | |
| 193 // the call is made. The precision should be considered as "best effort" | |
| 194 // and in some cases, such as on Windows when all high precision timers have | |
| 195 // been used up, can be off by as much as 15 millseconds (although 8 would be | |
| 196 // more likely). This can be mitigated by limiting the use of delayed tasks. | |
| 197 void PostDelayedTask(std::unique_ptr<QueuedTask> task, uint32_t milliseconds); | |
| 198 | |
| 199 template <class Closure> | |
| 200 void PostTask(const Closure& closure) { | |
| 201 PostTask(std::unique_ptr<QueuedTask>(new ClosureTask<Closure>(closure))); | |
| 202 } | |
| 203 | |
| 204 // See documentation above for performance expectations. | |
| 205 template <class Closure> | |
| 206 void PostDelayedTask(const Closure& closure, uint32_t milliseconds) { | |
| 207 PostDelayedTask( | |
| 208 std::unique_ptr<QueuedTask>(new ClosureTask<Closure>(closure)), | |
| 209 milliseconds); | |
| 210 } | |
| 211 | |
| 212 template <class Closure1, class Closure2> | |
| 213 void PostTaskAndReply(const Closure1& task, | |
| 214 const Closure2& reply, | |
| 215 TaskQueue* reply_queue) { | |
| 216 PostTaskAndReply( | |
| 217 std::unique_ptr<QueuedTask>(new ClosureTask<Closure1>(task)), | |
| 218 std::unique_ptr<QueuedTask>(new ClosureTask<Closure2>(reply)), | |
| 219 reply_queue); | |
| 220 } | |
| 221 | |
| 222 template <class Closure> | |
| 223 void PostTaskAndReply(std::unique_ptr<QueuedTask> task, | |
| 224 const Closure& reply) { | |
| 225 PostTaskAndReply(std::move(task), std::unique_ptr<QueuedTask>( | |
| 226 new ClosureTask<Closure>(reply))); | |
| 227 } | |
| 228 | |
| 229 template <class Closure> | |
| 230 void PostTaskAndReply(const Closure& task, | |
| 231 std::unique_ptr<QueuedTask> reply) { | |
| 232 PostTaskAndReply( | |
| 233 std::unique_ptr<QueuedTask>(new ClosureTask<Closure>(task)), | |
| 234 std::move(reply)); | |
| 235 } | |
| 236 | |
| 237 template <class Closure1, class Closure2> | |
| 238 void PostTaskAndReply(const Closure1& task, const Closure2& reply) { | |
| 239 PostTaskAndReply( | |
| 240 std::unique_ptr<QueuedTask>(new ClosureTask<Closure1>(task)), | |
| 241 std::unique_ptr<QueuedTask>(new ClosureTask<Closure2>(reply))); | |
| 242 } | |
| 243 | |
| 244 private: | |
| 245 #if defined(WEBRTC_BUILD_LIBEVENT) | |
| 246 static void ThreadMain(void* context); | |
| 247 static void OnWakeup(int socket, short flags, void* context); // NOLINT | |
| 248 static void RunTask(int fd, short flags, void* context); // NOLINT | |
| 249 static void RunTimer(int fd, short flags, void* context); // NOLINT | |
| 250 | |
| 251 class ReplyTaskOwner; | |
| 252 class PostAndReplyTask; | |
| 253 class SetTimerTask; | |
| 254 | |
| 255 typedef RefCountedObject<ReplyTaskOwner> ReplyTaskOwnerRef; | |
| 256 | |
| 257 void PrepareReplyTask(scoped_refptr<ReplyTaskOwnerRef> reply_task); | |
| 258 | |
| 259 struct QueueContext; | |
| 260 | |
| 261 int wakeup_pipe_in_ = -1; | |
| 262 int wakeup_pipe_out_ = -1; | |
| 263 event_base* event_base_; | |
| 264 std::unique_ptr<event> wakeup_event_; | |
| 265 PlatformThread thread_; | |
| 266 rtc::CriticalSection pending_lock_; | |
| 267 std::list<std::unique_ptr<QueuedTask>> pending_ GUARDED_BY(pending_lock_); | |
| 268 std::list<scoped_refptr<ReplyTaskOwnerRef>> pending_replies_ | |
| 269 GUARDED_BY(pending_lock_); | |
| 270 #elif defined(WEBRTC_MAC) | |
| 271 struct QueueContext; | |
| 272 struct TaskContext; | |
| 273 struct PostTaskAndReplyContext; | |
| 274 dispatch_queue_t queue_; | |
| 275 QueueContext* const context_; | |
| 276 #elif defined(WEBRTC_WIN) | |
| 277 class ThreadState; | |
| 278 void RunPendingTasks(); | |
| 279 static void ThreadMain(void* context); | |
| 280 | |
| 281 class WorkerThread : public PlatformThread { | |
| 282 public: | |
| 283 WorkerThread(ThreadRunFunction func, | |
| 284 void* obj, | |
| 285 const char* thread_name, | |
| 286 ThreadPriority priority) | |
| 287 : PlatformThread(func, obj, thread_name, priority) {} | |
| 288 | |
| 289 bool QueueAPC(PAPCFUNC apc_function, ULONG_PTR data) { | |
| 290 return PlatformThread::QueueAPC(apc_function, data); | |
| 291 } | |
| 292 }; | |
| 293 WorkerThread thread_; | |
| 294 rtc::CriticalSection pending_lock_; | |
| 295 std::queue<std::unique_ptr<QueuedTask>> pending_ GUARDED_BY(pending_lock_); | |
| 296 HANDLE in_queue_; | |
| 297 #else | |
| 298 #error not supported. | |
| 299 #endif | |
| 300 | |
| 301 RTC_DISALLOW_COPY_AND_ASSIGN(TaskQueue); | |
| 302 }; | |
| 303 | |
| 304 } // namespace rtc | |
| 305 | 18 |
| 306 #endif // WEBRTC_BASE_TASK_QUEUE_H_ | 19 #endif // WEBRTC_BASE_TASK_QUEUE_H_ |
| OLD | NEW |