| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 * Copyright 2011 The WebRTC Project Authors. All rights reserved. | |
| 3 * | |
| 4 * Use of this source code is governed by a BSD-style license | |
| 5 * that can be found in the LICENSE file in the root of the source | |
| 6 * tree. An additional intellectual property rights grant can be found | |
| 7 * in the file PATENTS. All contributing project authors may | |
| 8 * be found in the AUTHORS file in the root of the source tree. | |
| 9 */ | |
| 10 | |
| 11 #include <memory> | |
| 12 #include <string> | |
| 13 | |
| 14 #include "webrtc/base/fakesslidentity.h" | |
| 15 #include "webrtc/base/gunit.h" | |
| 16 #include "webrtc/base/helpers.h" | |
| 17 #include "webrtc/base/ssladapter.h" | |
| 18 #include "webrtc/base/sslfingerprint.h" | |
| 19 #include "webrtc/base/sslidentity.h" | |
| 20 #include "webrtc/base/stringutils.h" | |
| 21 | |
| 22 using rtc::SSLIdentity; | |
| 23 | |
| 24 const char kTestCertificate[] = "-----BEGIN CERTIFICATE-----\n" | |
| 25 "MIIB6TCCAVICAQYwDQYJKoZIhvcNAQEEBQAwWzELMAkGA1UEBhMCQVUxEzARBgNV\n" | |
| 26 "BAgTClF1ZWVuc2xhbmQxGjAYBgNVBAoTEUNyeXB0U29mdCBQdHkgTHRkMRswGQYD\n" | |
| 27 "VQQDExJUZXN0IENBICgxMDI0IGJpdCkwHhcNMDAxMDE2MjIzMTAzWhcNMDMwMTE0\n" | |
| 28 "MjIzMTAzWjBjMQswCQYDVQQGEwJBVTETMBEGA1UECBMKUXVlZW5zbGFuZDEaMBgG\n" | |
| 29 "A1UEChMRQ3J5cHRTb2Z0IFB0eSBMdGQxIzAhBgNVBAMTGlNlcnZlciB0ZXN0IGNl\n" | |
| 30 "cnQgKDUxMiBiaXQpMFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBAJ+zw4Qnlf8SMVIP\n" | |
| 31 "Fe9GEcStgOY2Ww/dgNdhjeD8ckUJNP5VZkVDTGiXav6ooKXfX3j/7tdkuD8Ey2//\n" | |
| 32 "Kv7+ue0CAwEAATANBgkqhkiG9w0BAQQFAAOBgQCT0grFQeZaqYb5EYfk20XixZV4\n" | |
| 33 "GmyAbXMftG1Eo7qGiMhYzRwGNWxEYojf5PZkYZXvSqZ/ZXHXa4g59jK/rJNnaVGM\n" | |
| 34 "k+xIX8mxQvlV0n5O9PIha5BX5teZnkHKgL8aKKLKW1BK7YTngsfSzzaeame5iKfz\n" | |
| 35 "itAE+OjGF+PFKbwX8Q==\n" | |
| 36 "-----END CERTIFICATE-----\n"; | |
| 37 | |
| 38 const unsigned char kTestCertSha1[] = { | |
| 39 0xA6, 0xC8, 0x59, 0xEA, 0xC3, 0x7E, 0x6D, 0x33, | |
| 40 0xCF, 0xE2, 0x69, 0x9D, 0x74, 0xE6, 0xF6, 0x8A, | |
| 41 0x9E, 0x47, 0xA7, 0xCA}; | |
| 42 const unsigned char kTestCertSha224[] = { | |
| 43 0xd4, 0xce, 0xc6, 0xcf, 0x28, 0xcb, 0xe9, 0x77, | |
| 44 0x38, 0x36, 0xcf, 0xb1, 0x3b, 0x4a, 0xd7, 0xbd, | |
| 45 0xae, 0x24, 0x21, 0x08, 0xcf, 0x6a, 0x44, 0x0d, | |
| 46 0x3f, 0x94, 0x2a, 0x5b}; | |
| 47 const unsigned char kTestCertSha256[] = { | |
| 48 0x41, 0x6b, 0xb4, 0x93, 0x47, 0x79, 0x77, 0x24, | |
| 49 0x77, 0x0b, 0x8b, 0x2e, 0xa6, 0x2b, 0xe0, 0xf9, | |
| 50 0x0a, 0xed, 0x1f, 0x31, 0xa6, 0xf7, 0x5c, 0xa1, | |
| 51 0x5a, 0xc4, 0xb0, 0xa2, 0xa4, 0x78, 0xb9, 0x76}; | |
| 52 const unsigned char kTestCertSha384[] = { | |
| 53 0x42, 0x31, 0x9a, 0x79, 0x1d, 0xd6, 0x08, 0xbf, | |
| 54 0x3b, 0xba, 0x36, 0xd8, 0x37, 0x4a, 0x9a, 0x75, | |
| 55 0xd3, 0x25, 0x6e, 0x28, 0x92, 0xbe, 0x06, 0xb7, | |
| 56 0xc5, 0xa0, 0x83, 0xe3, 0x86, 0xb1, 0x03, 0xfc, | |
| 57 0x64, 0x47, 0xd6, 0xd8, 0xaa, 0xd9, 0x36, 0x60, | |
| 58 0x04, 0xcc, 0xbe, 0x7d, 0x6a, 0xe8, 0x34, 0x49}; | |
| 59 const unsigned char kTestCertSha512[] = { | |
| 60 0x51, 0x1d, 0xec, 0x02, 0x3d, 0x51, 0x45, 0xd3, | |
| 61 0xd8, 0x1d, 0xa4, 0x9d, 0x43, 0xc9, 0xee, 0x32, | |
| 62 0x6f, 0x4f, 0x37, 0xee, 0xab, 0x3f, 0x25, 0xdf, | |
| 63 0x72, 0xfc, 0x61, 0x1a, 0xd5, 0x92, 0xff, 0x6b, | |
| 64 0x28, 0x71, 0x58, 0xb3, 0xe1, 0x8a, 0x18, 0xcf, | |
| 65 0x61, 0x33, 0x0e, 0x14, 0xc3, 0x04, 0xaa, 0x07, | |
| 66 0xf6, 0xa5, 0xda, 0xdc, 0x42, 0x42, 0x22, 0x35, | |
| 67 0xce, 0x26, 0x58, 0x4a, 0x33, 0x6d, 0xbc, 0xb6}; | |
| 68 | |
| 69 // These PEM strings were created by generating an identity with | |
| 70 // |SSLIdentity::Generate| and invoking |identity->PrivateKeyToPEMString()|, | |
| 71 // |identity->PublicKeyToPEMString()| and | |
| 72 // |identity->certificate().ToPEMString()|. If the crypto library is updated, | |
| 73 // and the update changes the string form of the keys, these will have to be | |
| 74 // updated too. The fingerprint, fingerprint algorithm and base64 certificate | |
| 75 // were created by calling |identity->certificate().GetStats()|. | |
| 76 static const char kRSA_PRIVATE_KEY_PEM[] = | |
| 77 "-----BEGIN PRIVATE KEY-----\n" | |
| 78 "MIICdQIBADANBgkqhkiG9w0BAQEFAASCAl8wggJbAgEAAoGBAMQPqDStRlYeDpkX\n" | |
| 79 "erRmv+a1naM8vSVSY0gG2plnrnofViWRW3MRqWC+020MsIj3hPZeSAnt/y/FL/nr\n" | |
| 80 "4Ea7NXcwdRo1/1xEK7U/f/cjSg1aunyvHCHwcFcMr31HLFvHr0ZgcFwbgIuFLNEl\n" | |
| 81 "7kK5HMO9APz1ntUjek8BmBj8yMl9AgMBAAECgYA8FWBC5GcNtSBcIinkZyigF0A7\n" | |
| 82 "6j081sa+J/uNz4xUuI257ZXM6biygUhhvuXK06/XoIULJfhyN0fAm1yb0HtNhiUs\n" | |
| 83 "kMOYeon6b8FqFaPjrQf7Gr9FMiIHXNK19uegTMKztXyPZoUWlX84X0iawY95x0Y3\n" | |
| 84 "73f6P2rN2UOjlVVjAQJBAOKy3l2w3Zj2w0oAJox0eMwl+RxBNt1C42SHrob2mFUT\n" | |
| 85 "rytpVVYOasr8CoDI0kjacjI94sLum+buJoXXX6YTGO0CQQDdZwlYIEkoS3ftfxPa\n" | |
| 86 "Ai0YTBzAWvHJg0r8Gk/TkHo6IM+LSsZ9ZYUv/vBe4BKLw1I4hZ+bQvBiq+f8ROtk\n" | |
| 87 "+TDRAkAPL3ghwoU1h+IRBO2QHwUwd6K2N9AbBi4BP+168O3HVSg4ujeTKigRLMzv\n" | |
| 88 "T4R2iNt5bhfQgvdCgtVlxcWMdF8JAkBwDCg3eEdt5BuyjwBt8XH+/O4ED0KUWCTH\n" | |
| 89 "x00k5dZlupsuhE5Fwe4QpzXg3gekwdnHjyCCQ/NCDHvgOMTkmhQxAkA9V03KRX9b\n" | |
| 90 "bhvEzY/fu8gEp+EzsER96/D79az5z1BaMGL5OPM2xHBPJATKlswnAa7Lp3QKGZGk\n" | |
| 91 "TxslfL18J71s\n" | |
| 92 "-----END PRIVATE KEY-----\n"; | |
| 93 static const char kRSA_PUBLIC_KEY_PEM[] = | |
| 94 "-----BEGIN PUBLIC KEY-----\n" | |
| 95 "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDED6g0rUZWHg6ZF3q0Zr/mtZ2j\n" | |
| 96 "PL0lUmNIBtqZZ656H1YlkVtzEalgvtNtDLCI94T2XkgJ7f8vxS/56+BGuzV3MHUa\n" | |
| 97 "Nf9cRCu1P3/3I0oNWrp8rxwh8HBXDK99Ryxbx69GYHBcG4CLhSzRJe5CuRzDvQD8\n" | |
| 98 "9Z7VI3pPAZgY/MjJfQIDAQAB\n" | |
| 99 "-----END PUBLIC KEY-----\n"; | |
| 100 static const char kRSA_CERT_PEM[] = | |
| 101 "-----BEGIN CERTIFICATE-----\n" | |
| 102 "MIIBnDCCAQWgAwIBAgIJAOEHLgeWYwrpMA0GCSqGSIb3DQEBCwUAMBAxDjAMBgNV\n" | |
| 103 "BAMMBXRlc3QxMB4XDTE2MDQyNDE4MTAyMloXDTE2MDUyNTE4MTAyMlowEDEOMAwG\n" | |
| 104 "A1UEAwwFdGVzdDEwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAMQPqDStRlYe\n" | |
| 105 "DpkXerRmv+a1naM8vSVSY0gG2plnrnofViWRW3MRqWC+020MsIj3hPZeSAnt/y/F\n" | |
| 106 "L/nr4Ea7NXcwdRo1/1xEK7U/f/cjSg1aunyvHCHwcFcMr31HLFvHr0ZgcFwbgIuF\n" | |
| 107 "LNEl7kK5HMO9APz1ntUjek8BmBj8yMl9AgMBAAEwDQYJKoZIhvcNAQELBQADgYEA\n" | |
| 108 "C3ehaZFl+oEYN069C2ht/gMzuC77L854RF/x7xRtNZzkcg9TVgXXdM3auUvJi8dx\n" | |
| 109 "yTpU3ixErjQvoZew5ngXTEvTY8BSQUijJEaLWh8n6NDKRbEGTdAk8nPAmq9hdCFq\n" | |
| 110 "e3UkexqNHm3g/VxG4NUC1Y+w29ai0/Rgh+VvgbDwK+Q=\n" | |
| 111 "-----END CERTIFICATE-----\n"; | |
| 112 static const char kRSA_FINGERPRINT[] = | |
| 113 "3C:E8:B2:70:09:CF:A9:09:5A:F4:EF:8F:8D:8A:32:FF:EA:04:91:BA:6E:D4:17:78:16" | |
| 114 ":2A:EE:F9:9A:DD:E2:2B"; | |
| 115 static const char kRSA_FINGERPRINT_ALGORITHM[] = | |
| 116 "sha-256"; | |
| 117 static const char kRSA_BASE64_CERTIFICATE[] = | |
| 118 "MIIBnDCCAQWgAwIBAgIJAOEHLgeWYwrpMA0GCSqGSIb3DQEBCwUAMBAxDjAMBgNVBAMMBXRlc3" | |
| 119 "QxMB4XDTE2MDQyNDE4MTAyMloXDTE2MDUyNTE4MTAyMlowEDEOMAwGA1UEAwwFdGVzdDEwgZ8w" | |
| 120 "DQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAMQPqDStRlYeDpkXerRmv+a1naM8vSVSY0gG2plnrn" | |
| 121 "ofViWRW3MRqWC+020MsIj3hPZeSAnt/y/FL/nr4Ea7NXcwdRo1/1xEK7U/f/cjSg1aunyvHCHw" | |
| 122 "cFcMr31HLFvHr0ZgcFwbgIuFLNEl7kK5HMO9APz1ntUjek8BmBj8yMl9AgMBAAEwDQYJKoZIhv" | |
| 123 "cNAQELBQADgYEAC3ehaZFl+oEYN069C2ht/gMzuC77L854RF/x7xRtNZzkcg9TVgXXdM3auUvJ" | |
| 124 "i8dxyTpU3ixErjQvoZew5ngXTEvTY8BSQUijJEaLWh8n6NDKRbEGTdAk8nPAmq9hdCFqe3Ukex" | |
| 125 "qNHm3g/VxG4NUC1Y+w29ai0/Rgh+VvgbDwK+Q="; | |
| 126 | |
| 127 static const char kECDSA_PRIVATE_KEY_PEM[] = | |
| 128 "-----BEGIN PRIVATE KEY-----\n" | |
| 129 "MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQg/AkEA2hklq7dQ2rN\n" | |
| 130 "ZxYL6hOUACL4pn7P4FYlA3ZQhIChRANCAAR7YgdO3utP/8IqVRq8G4VZKreMAxeN\n" | |
| 131 "rUa12twthv4uFjuHAHa9D9oyAjncmn+xvZZRyVmKrA56jRzENcEEHoAg\n" | |
| 132 "-----END PRIVATE KEY-----\n"; | |
| 133 static const char kECDSA_PUBLIC_KEY_PEM[] = | |
| 134 "-----BEGIN PUBLIC KEY-----\n" | |
| 135 "MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEe2IHTt7rT//CKlUavBuFWSq3jAMX\n" | |
| 136 "ja1GtdrcLYb+LhY7hwB2vQ/aMgI53Jp/sb2WUclZiqwOeo0cxDXBBB6AIA==\n" | |
| 137 "-----END PUBLIC KEY-----\n"; | |
| 138 static const char kECDSA_CERT_PEM[] = | |
| 139 "-----BEGIN CERTIFICATE-----\n" | |
| 140 "MIIBFDCBu6ADAgECAgkArpkxjw62sW4wCgYIKoZIzj0EAwIwEDEOMAwGA1UEAwwF\n" | |
| 141 "dGVzdDMwHhcNMTYwNDI0MTgxNDM4WhcNMTYwNTI1MTgxNDM4WjAQMQ4wDAYDVQQD\n" | |
| 142 "DAV0ZXN0MzBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABHtiB07e60//wipVGrwb\n" | |
| 143 "hVkqt4wDF42tRrXa3C2G/i4WO4cAdr0P2jICOdyaf7G9llHJWYqsDnqNHMQ1wQQe\n" | |
| 144 "gCAwCgYIKoZIzj0EAwIDSAAwRQIhANyreQ/K5yuPPpirsd0e/4WGLHou6bIOSQks\n" | |
| 145 "DYzo56NmAiAKOr3u8ol3LmygbUCwEvtWrS8QcJDygxHPACo99hkekw==\n" | |
| 146 "-----END CERTIFICATE-----\n"; | |
| 147 static const char kECDSA_FINGERPRINT[] = | |
| 148 "9F:47:FA:88:76:3D:18:B8:00:A0:59:9D:C3:5D:34:0B:1F:B8:99:9E:68:DA:F3:A5:DA" | |
| 149 ":50:33:A9:FF:4D:31:89"; | |
| 150 static const char kECDSA_FINGERPRINT_ALGORITHM[] = | |
| 151 "sha-256"; | |
| 152 static const char kECDSA_BASE64_CERTIFICATE[] = | |
| 153 "MIIBFDCBu6ADAgECAgkArpkxjw62sW4wCgYIKoZIzj0EAwIwEDEOMAwGA1UEAwwFdGVzdDMwHh" | |
| 154 "cNMTYwNDI0MTgxNDM4WhcNMTYwNTI1MTgxNDM4WjAQMQ4wDAYDVQQDDAV0ZXN0MzBZMBMGByqG" | |
| 155 "SM49AgEGCCqGSM49AwEHA0IABHtiB07e60//wipVGrwbhVkqt4wDF42tRrXa3C2G/i4WO4cAdr" | |
| 156 "0P2jICOdyaf7G9llHJWYqsDnqNHMQ1wQQegCAwCgYIKoZIzj0EAwIDSAAwRQIhANyreQ/K5yuP" | |
| 157 "Ppirsd0e/4WGLHou6bIOSQksDYzo56NmAiAKOr3u8ol3LmygbUCwEvtWrS8QcJDygxHPACo99h" | |
| 158 "kekw=="; | |
| 159 | |
| 160 struct IdentityAndInfo { | |
| 161 std::unique_ptr<rtc::SSLIdentity> identity; | |
| 162 std::vector<std::string> ders; | |
| 163 std::vector<std::string> pems; | |
| 164 std::vector<std::string> fingerprints; | |
| 165 }; | |
| 166 | |
| 167 IdentityAndInfo CreateFakeIdentityAndInfoFromDers( | |
| 168 const std::vector<std::string>& ders) { | |
| 169 RTC_CHECK(!ders.empty()); | |
| 170 IdentityAndInfo info; | |
| 171 info.ders = ders; | |
| 172 for (const std::string& der : ders) { | |
| 173 info.pems.push_back(rtc::SSLIdentity::DerToPem( | |
| 174 "CERTIFICATE", | |
| 175 reinterpret_cast<const unsigned char*>(der.c_str()), | |
| 176 der.length())); | |
| 177 } | |
| 178 info.identity.reset( | |
| 179 new rtc::FakeSSLIdentity(rtc::FakeSSLCertificate(info.pems))); | |
| 180 // Strip header/footer and newline characters of PEM strings. | |
| 181 for (size_t i = 0; i < info.pems.size(); ++i) { | |
| 182 rtc::replace_substrs("-----BEGIN CERTIFICATE-----", 27, | |
| 183 "", 0, &info.pems[i]); | |
| 184 rtc::replace_substrs("-----END CERTIFICATE-----", 25, | |
| 185 "", 0, &info.pems[i]); | |
| 186 rtc::replace_substrs("\n", 1, | |
| 187 "", 0, &info.pems[i]); | |
| 188 } | |
| 189 // Fingerprint of leaf certificate. | |
| 190 std::unique_ptr<rtc::SSLFingerprint> fp( | |
| 191 rtc::SSLFingerprint::Create("sha-1", &info.identity->certificate())); | |
| 192 EXPECT_TRUE(fp); | |
| 193 info.fingerprints.push_back(fp->GetRfc4572Fingerprint()); | |
| 194 // Fingerprints of the rest of the chain. | |
| 195 std::unique_ptr<rtc::SSLCertChain> chain = | |
| 196 info.identity->certificate().GetChain(); | |
| 197 if (chain) { | |
| 198 for (size_t i = 0; i < chain->GetSize(); i++) { | |
| 199 fp.reset(rtc::SSLFingerprint::Create("sha-1", &chain->Get(i))); | |
| 200 EXPECT_TRUE(fp); | |
| 201 info.fingerprints.push_back(fp->GetRfc4572Fingerprint()); | |
| 202 } | |
| 203 } | |
| 204 EXPECT_EQ(info.ders.size(), info.fingerprints.size()); | |
| 205 return info; | |
| 206 } | |
| 207 | |
| 208 class SSLIdentityTest : public testing::Test { | |
| 209 public: | |
| 210 SSLIdentityTest() {} | |
| 211 | |
| 212 ~SSLIdentityTest() { | |
| 213 } | |
| 214 | |
| 215 virtual void SetUp() { | |
| 216 identity_rsa1_.reset(SSLIdentity::Generate("test1", rtc::KT_RSA)); | |
| 217 identity_rsa2_.reset(SSLIdentity::Generate("test2", rtc::KT_RSA)); | |
| 218 identity_ecdsa1_.reset(SSLIdentity::Generate("test3", rtc::KT_ECDSA)); | |
| 219 identity_ecdsa2_.reset(SSLIdentity::Generate("test4", rtc::KT_ECDSA)); | |
| 220 | |
| 221 ASSERT_TRUE(identity_rsa1_); | |
| 222 ASSERT_TRUE(identity_rsa2_); | |
| 223 ASSERT_TRUE(identity_ecdsa1_); | |
| 224 ASSERT_TRUE(identity_ecdsa2_); | |
| 225 | |
| 226 test_cert_.reset(rtc::SSLCertificate::FromPEMString(kTestCertificate)); | |
| 227 ASSERT_TRUE(test_cert_); | |
| 228 } | |
| 229 | |
| 230 void TestGetSignatureDigestAlgorithm() { | |
| 231 std::string digest_algorithm; | |
| 232 | |
| 233 ASSERT_TRUE(identity_rsa1_->certificate().GetSignatureDigestAlgorithm( | |
| 234 &digest_algorithm)); | |
| 235 ASSERT_EQ(rtc::DIGEST_SHA_256, digest_algorithm); | |
| 236 | |
| 237 ASSERT_TRUE(identity_rsa2_->certificate().GetSignatureDigestAlgorithm( | |
| 238 &digest_algorithm)); | |
| 239 ASSERT_EQ(rtc::DIGEST_SHA_256, digest_algorithm); | |
| 240 | |
| 241 ASSERT_TRUE(identity_ecdsa1_->certificate().GetSignatureDigestAlgorithm( | |
| 242 &digest_algorithm)); | |
| 243 ASSERT_EQ(rtc::DIGEST_SHA_256, digest_algorithm); | |
| 244 | |
| 245 ASSERT_TRUE(identity_ecdsa2_->certificate().GetSignatureDigestAlgorithm( | |
| 246 &digest_algorithm)); | |
| 247 ASSERT_EQ(rtc::DIGEST_SHA_256, digest_algorithm); | |
| 248 | |
| 249 // The test certificate has an MD5-based signature. | |
| 250 ASSERT_TRUE(test_cert_->GetSignatureDigestAlgorithm(&digest_algorithm)); | |
| 251 ASSERT_EQ(rtc::DIGEST_MD5, digest_algorithm); | |
| 252 } | |
| 253 | |
| 254 typedef unsigned char DigestType[rtc::MessageDigest::kMaxSize]; | |
| 255 | |
| 256 void TestDigestHelper(DigestType digest, | |
| 257 const SSLIdentity* identity, | |
| 258 const std::string& algorithm, | |
| 259 size_t expected_len) { | |
| 260 DigestType digest1; | |
| 261 size_t digest_len; | |
| 262 bool rv; | |
| 263 | |
| 264 memset(digest, 0, expected_len); | |
| 265 rv = identity->certificate().ComputeDigest(algorithm, digest, | |
| 266 sizeof(DigestType), &digest_len); | |
| 267 EXPECT_TRUE(rv); | |
| 268 EXPECT_EQ(expected_len, digest_len); | |
| 269 | |
| 270 // Repeat digest computation for the identity as a sanity check. | |
| 271 memset(digest1, 0xff, expected_len); | |
| 272 rv = identity->certificate().ComputeDigest(algorithm, digest1, | |
| 273 sizeof(DigestType), &digest_len); | |
| 274 EXPECT_TRUE(rv); | |
| 275 EXPECT_EQ(expected_len, digest_len); | |
| 276 | |
| 277 EXPECT_EQ(0, memcmp(digest, digest1, expected_len)); | |
| 278 } | |
| 279 | |
| 280 void TestDigestForGeneratedCert(const std::string& algorithm, | |
| 281 size_t expected_len) { | |
| 282 DigestType digest[4]; | |
| 283 | |
| 284 ASSERT_TRUE(expected_len <= sizeof(DigestType)); | |
| 285 | |
| 286 TestDigestHelper(digest[0], identity_rsa1_.get(), algorithm, expected_len); | |
| 287 TestDigestHelper(digest[1], identity_rsa2_.get(), algorithm, expected_len); | |
| 288 TestDigestHelper(digest[2], identity_ecdsa1_.get(), algorithm, | |
| 289 expected_len); | |
| 290 TestDigestHelper(digest[3], identity_ecdsa2_.get(), algorithm, | |
| 291 expected_len); | |
| 292 | |
| 293 // Sanity check that all four digests are unique. This could theoretically | |
| 294 // fail, since cryptographic hash collisions have a non-zero probability. | |
| 295 for (int i = 0; i < 4; i++) { | |
| 296 for (int j = 0; j < 4; j++) { | |
| 297 if (i != j) | |
| 298 EXPECT_NE(0, memcmp(digest[i], digest[j], expected_len)); | |
| 299 } | |
| 300 } | |
| 301 } | |
| 302 | |
| 303 void TestDigestForFixedCert(const std::string& algorithm, | |
| 304 size_t expected_len, | |
| 305 const unsigned char* expected_digest) { | |
| 306 bool rv; | |
| 307 DigestType digest; | |
| 308 size_t digest_len; | |
| 309 | |
| 310 ASSERT_TRUE(expected_len <= sizeof(DigestType)); | |
| 311 | |
| 312 rv = test_cert_->ComputeDigest(algorithm, digest, sizeof(digest), | |
| 313 &digest_len); | |
| 314 EXPECT_TRUE(rv); | |
| 315 EXPECT_EQ(expected_len, digest_len); | |
| 316 EXPECT_EQ(0, memcmp(digest, expected_digest, expected_len)); | |
| 317 } | |
| 318 | |
| 319 void TestCloningIdentity(const SSLIdentity& identity) { | |
| 320 // Convert |identity| to PEM strings and create a new identity by converting | |
| 321 // back from the string format. | |
| 322 std::string priv_pem = identity.PrivateKeyToPEMString(); | |
| 323 std::string publ_pem = identity.PublicKeyToPEMString(); | |
| 324 std::string cert_pem = identity.certificate().ToPEMString(); | |
| 325 std::unique_ptr<SSLIdentity> clone( | |
| 326 SSLIdentity::FromPEMStrings(priv_pem, cert_pem)); | |
| 327 EXPECT_TRUE(clone); | |
| 328 | |
| 329 // Make sure the clone is identical to the original. | |
| 330 EXPECT_TRUE(identity == *clone); | |
| 331 ASSERT_EQ(identity.certificate().CertificateExpirationTime(), | |
| 332 clone->certificate().CertificateExpirationTime()); | |
| 333 | |
| 334 // At this point we are confident that the identities are identical. To be | |
| 335 // extra sure, we compare PEM strings of the clone with the original. Note | |
| 336 // that the PEM strings of two identities are not strictly guaranteed to be | |
| 337 // equal (they describe structs whose members could be listed in a different | |
| 338 // order, for example). But because the same function is used to produce | |
| 339 // both PEMs, its a good enough bet that this comparison will work. If the | |
| 340 // assumption stops holding in the future we can always remove this from the | |
| 341 // unittest. | |
| 342 std::string clone_priv_pem = clone->PrivateKeyToPEMString(); | |
| 343 std::string clone_publ_pem = clone->PublicKeyToPEMString(); | |
| 344 std::string clone_cert_pem = clone->certificate().ToPEMString(); | |
| 345 ASSERT_EQ(priv_pem, clone_priv_pem); | |
| 346 ASSERT_EQ(publ_pem, clone_publ_pem); | |
| 347 ASSERT_EQ(cert_pem, clone_cert_pem); | |
| 348 } | |
| 349 | |
| 350 protected: | |
| 351 std::unique_ptr<SSLIdentity> identity_rsa1_; | |
| 352 std::unique_ptr<SSLIdentity> identity_rsa2_; | |
| 353 std::unique_ptr<SSLIdentity> identity_ecdsa1_; | |
| 354 std::unique_ptr<SSLIdentity> identity_ecdsa2_; | |
| 355 std::unique_ptr<rtc::SSLCertificate> test_cert_; | |
| 356 }; | |
| 357 | |
| 358 TEST_F(SSLIdentityTest, FixedDigestSHA1) { | |
| 359 TestDigestForFixedCert(rtc::DIGEST_SHA_1, 20, kTestCertSha1); | |
| 360 } | |
| 361 | |
| 362 // HASH_AlgSHA224 is not supported in the chromium linux build. | |
| 363 TEST_F(SSLIdentityTest, FixedDigestSHA224) { | |
| 364 TestDigestForFixedCert(rtc::DIGEST_SHA_224, 28, kTestCertSha224); | |
| 365 } | |
| 366 | |
| 367 TEST_F(SSLIdentityTest, FixedDigestSHA256) { | |
| 368 TestDigestForFixedCert(rtc::DIGEST_SHA_256, 32, kTestCertSha256); | |
| 369 } | |
| 370 | |
| 371 TEST_F(SSLIdentityTest, FixedDigestSHA384) { | |
| 372 TestDigestForFixedCert(rtc::DIGEST_SHA_384, 48, kTestCertSha384); | |
| 373 } | |
| 374 | |
| 375 TEST_F(SSLIdentityTest, FixedDigestSHA512) { | |
| 376 TestDigestForFixedCert(rtc::DIGEST_SHA_512, 64, kTestCertSha512); | |
| 377 } | |
| 378 | |
| 379 // HASH_AlgSHA224 is not supported in the chromium linux build. | |
| 380 TEST_F(SSLIdentityTest, DigestSHA224) { | |
| 381 TestDigestForGeneratedCert(rtc::DIGEST_SHA_224, 28); | |
| 382 } | |
| 383 | |
| 384 TEST_F(SSLIdentityTest, DigestSHA256) { | |
| 385 TestDigestForGeneratedCert(rtc::DIGEST_SHA_256, 32); | |
| 386 } | |
| 387 | |
| 388 TEST_F(SSLIdentityTest, DigestSHA384) { | |
| 389 TestDigestForGeneratedCert(rtc::DIGEST_SHA_384, 48); | |
| 390 } | |
| 391 | |
| 392 TEST_F(SSLIdentityTest, DigestSHA512) { | |
| 393 TestDigestForGeneratedCert(rtc::DIGEST_SHA_512, 64); | |
| 394 } | |
| 395 | |
| 396 TEST_F(SSLIdentityTest, IdentityComparison) { | |
| 397 EXPECT_TRUE(*identity_rsa1_ == *identity_rsa1_); | |
| 398 EXPECT_FALSE(*identity_rsa1_ == *identity_rsa2_); | |
| 399 EXPECT_FALSE(*identity_rsa1_ == *identity_ecdsa1_); | |
| 400 EXPECT_FALSE(*identity_rsa1_ == *identity_ecdsa2_); | |
| 401 | |
| 402 EXPECT_TRUE(*identity_rsa2_ == *identity_rsa2_); | |
| 403 EXPECT_FALSE(*identity_rsa2_ == *identity_ecdsa1_); | |
| 404 EXPECT_FALSE(*identity_rsa2_ == *identity_ecdsa2_); | |
| 405 | |
| 406 EXPECT_TRUE(*identity_ecdsa1_ == *identity_ecdsa1_); | |
| 407 EXPECT_FALSE(*identity_ecdsa1_ == *identity_ecdsa2_); | |
| 408 } | |
| 409 | |
| 410 TEST_F(SSLIdentityTest, FromPEMStringsRSA) { | |
| 411 std::unique_ptr<SSLIdentity> identity( | |
| 412 SSLIdentity::FromPEMStrings(kRSA_PRIVATE_KEY_PEM, kRSA_CERT_PEM)); | |
| 413 EXPECT_TRUE(identity); | |
| 414 EXPECT_EQ(kRSA_PRIVATE_KEY_PEM, identity->PrivateKeyToPEMString()); | |
| 415 EXPECT_EQ(kRSA_PUBLIC_KEY_PEM, identity->PublicKeyToPEMString()); | |
| 416 EXPECT_EQ(kRSA_CERT_PEM, identity->certificate().ToPEMString()); | |
| 417 } | |
| 418 | |
| 419 TEST_F(SSLIdentityTest, FromPEMStringsEC) { | |
| 420 std::unique_ptr<SSLIdentity> identity( | |
| 421 SSLIdentity::FromPEMStrings(kECDSA_PRIVATE_KEY_PEM, kECDSA_CERT_PEM)); | |
| 422 EXPECT_TRUE(identity); | |
| 423 EXPECT_EQ(kECDSA_PRIVATE_KEY_PEM, identity->PrivateKeyToPEMString()); | |
| 424 EXPECT_EQ(kECDSA_PUBLIC_KEY_PEM, identity->PublicKeyToPEMString()); | |
| 425 EXPECT_EQ(kECDSA_CERT_PEM, identity->certificate().ToPEMString()); | |
| 426 } | |
| 427 | |
| 428 TEST_F(SSLIdentityTest, CloneIdentityRSA) { | |
| 429 TestCloningIdentity(*identity_rsa1_); | |
| 430 TestCloningIdentity(*identity_rsa2_); | |
| 431 } | |
| 432 | |
| 433 TEST_F(SSLIdentityTest, CloneIdentityECDSA) { | |
| 434 TestCloningIdentity(*identity_ecdsa1_); | |
| 435 TestCloningIdentity(*identity_ecdsa2_); | |
| 436 } | |
| 437 | |
| 438 TEST_F(SSLIdentityTest, PemDerConversion) { | |
| 439 std::string der; | |
| 440 EXPECT_TRUE(SSLIdentity::PemToDer("CERTIFICATE", kTestCertificate, &der)); | |
| 441 | |
| 442 EXPECT_EQ(kTestCertificate, SSLIdentity::DerToPem( | |
| 443 "CERTIFICATE", | |
| 444 reinterpret_cast<const unsigned char*>(der.data()), der.length())); | |
| 445 } | |
| 446 | |
| 447 TEST_F(SSLIdentityTest, GetSignatureDigestAlgorithm) { | |
| 448 TestGetSignatureDigestAlgorithm(); | |
| 449 } | |
| 450 | |
| 451 TEST_F(SSLIdentityTest, SSLCertificateGetStatsRSA) { | |
| 452 std::unique_ptr<SSLIdentity> identity( | |
| 453 SSLIdentity::FromPEMStrings(kRSA_PRIVATE_KEY_PEM, kRSA_CERT_PEM)); | |
| 454 std::unique_ptr<rtc::SSLCertificateStats> stats = | |
| 455 identity->certificate().GetStats(); | |
| 456 EXPECT_EQ(stats->fingerprint, kRSA_FINGERPRINT); | |
| 457 EXPECT_EQ(stats->fingerprint_algorithm, kRSA_FINGERPRINT_ALGORITHM); | |
| 458 EXPECT_EQ(stats->base64_certificate, kRSA_BASE64_CERTIFICATE); | |
| 459 EXPECT_FALSE(stats->issuer); | |
| 460 } | |
| 461 | |
| 462 TEST_F(SSLIdentityTest, SSLCertificateGetStatsECDSA) { | |
| 463 std::unique_ptr<SSLIdentity> identity( | |
| 464 SSLIdentity::FromPEMStrings(kECDSA_PRIVATE_KEY_PEM, kECDSA_CERT_PEM)); | |
| 465 std::unique_ptr<rtc::SSLCertificateStats> stats = | |
| 466 identity->certificate().GetStats(); | |
| 467 EXPECT_EQ(stats->fingerprint, kECDSA_FINGERPRINT); | |
| 468 EXPECT_EQ(stats->fingerprint_algorithm, kECDSA_FINGERPRINT_ALGORITHM); | |
| 469 EXPECT_EQ(stats->base64_certificate, kECDSA_BASE64_CERTIFICATE); | |
| 470 EXPECT_FALSE(stats->issuer); | |
| 471 } | |
| 472 | |
| 473 TEST_F(SSLIdentityTest, SSLCertificateGetStatsWithChain) { | |
| 474 std::vector<std::string> ders; | |
| 475 ders.push_back("every der results in"); | |
| 476 ders.push_back("an identity + certificate"); | |
| 477 ders.push_back("in a certificate chain"); | |
| 478 IdentityAndInfo info = CreateFakeIdentityAndInfoFromDers(ders); | |
| 479 EXPECT_TRUE(info.identity); | |
| 480 EXPECT_EQ(info.ders, ders); | |
| 481 EXPECT_EQ(info.pems.size(), info.ders.size()); | |
| 482 EXPECT_EQ(info.fingerprints.size(), info.ders.size()); | |
| 483 | |
| 484 std::unique_ptr<rtc::SSLCertificateStats> first_stats = | |
| 485 info.identity->certificate().GetStats(); | |
| 486 rtc::SSLCertificateStats* cert_stats = first_stats.get(); | |
| 487 for (size_t i = 0; i < info.ders.size(); ++i) { | |
| 488 EXPECT_EQ(cert_stats->fingerprint, info.fingerprints[i]); | |
| 489 EXPECT_EQ(cert_stats->fingerprint_algorithm, "sha-1"); | |
| 490 EXPECT_EQ(cert_stats->base64_certificate, info.pems[i]); | |
| 491 cert_stats = cert_stats->issuer.get(); | |
| 492 EXPECT_EQ(static_cast<bool>(cert_stats), i + 1 < info.ders.size()); | |
| 493 } | |
| 494 } | |
| 495 | |
| 496 class SSLIdentityExpirationTest : public testing::Test { | |
| 497 public: | |
| 498 SSLIdentityExpirationTest() { | |
| 499 // Set use of the test RNG to get deterministic expiration timestamp. | |
| 500 rtc::SetRandomTestMode(true); | |
| 501 } | |
| 502 ~SSLIdentityExpirationTest() { | |
| 503 // Put it back for the next test. | |
| 504 rtc::SetRandomTestMode(false); | |
| 505 } | |
| 506 | |
| 507 void TestASN1TimeToSec() { | |
| 508 struct asn_example { | |
| 509 const char* string; | |
| 510 bool long_format; | |
| 511 int64_t want; | |
| 512 } static const data[] = { | |
| 513 // Valid examples. | |
| 514 {"19700101000000Z", true, 0}, | |
| 515 {"700101000000Z", false, 0}, | |
| 516 {"19700101000001Z", true, 1}, | |
| 517 {"700101000001Z", false, 1}, | |
| 518 {"19700101000100Z", true, 60}, | |
| 519 {"19700101000101Z", true, 61}, | |
| 520 {"19700101010000Z", true, 3600}, | |
| 521 {"19700101010001Z", true, 3601}, | |
| 522 {"19700101010100Z", true, 3660}, | |
| 523 {"19700101010101Z", true, 3661}, | |
| 524 {"710911012345Z", false, 53400225}, | |
| 525 {"20000101000000Z", true, 946684800}, | |
| 526 {"20000101000000Z", true, 946684800}, | |
| 527 {"20151130140156Z", true, 1448892116}, | |
| 528 {"151130140156Z", false, 1448892116}, | |
| 529 {"20491231235959Z", true, 2524607999}, | |
| 530 {"491231235959Z", false, 2524607999}, | |
| 531 {"20500101000000Z", true, 2524607999+1}, | |
| 532 {"20700101000000Z", true, 3155760000}, | |
| 533 {"21000101000000Z", true, 4102444800}, | |
| 534 {"24000101000000Z", true, 13569465600}, | |
| 535 | |
| 536 // Invalid examples. | |
| 537 {"19700101000000", true, -1}, // missing Z long format | |
| 538 {"19700101000000X", true, -1}, // X instead of Z long format | |
| 539 {"197001010000000", true, -1}, // 0 instead of Z long format | |
| 540 {"1970010100000000Z", true, -1}, // excess digits long format | |
| 541 {"700101000000", false, -1}, // missing Z short format | |
| 542 {"700101000000X", false, -1}, // X instead of Z short format | |
| 543 {"7001010000000", false, -1}, // 0 instead of Z short format | |
| 544 {"70010100000000Z", false, -1}, // excess digits short format | |
| 545 {":9700101000000Z", true, -1}, // invalid character | |
| 546 {"1:700101000001Z", true, -1}, // invalid character | |
| 547 {"19:00101000100Z", true, -1}, // invalid character | |
| 548 {"197:0101000101Z", true, -1}, // invalid character | |
| 549 {"1970:101010000Z", true, -1}, // invalid character | |
| 550 {"19700:01010001Z", true, -1}, // invalid character | |
| 551 {"197001:1010100Z", true, -1}, // invalid character | |
| 552 {"1970010:010101Z", true, -1}, // invalid character | |
| 553 {"70010100:000Z", false, -1}, // invalid character | |
| 554 {"700101000:01Z", false, -1}, // invalid character | |
| 555 {"2000010100:000Z", true, -1}, // invalid character | |
| 556 {"21000101000:00Z", true, -1}, // invalid character | |
| 557 {"240001010000:0Z", true, -1}, // invalid character | |
| 558 {"500101000000Z", false, -1}, // but too old for epoch | |
| 559 {"691231235959Z", false, -1}, // too old for epoch | |
| 560 {"19611118043000Z", false, -1}, // way too old for epoch | |
| 561 }; | |
| 562 | |
| 563 unsigned char buf[20]; | |
| 564 | |
| 565 // Run all examples and check for the expected result. | |
| 566 for (const auto& entry : data) { | |
| 567 size_t length = strlen(entry.string); | |
| 568 memcpy(buf, entry.string, length); // Copy the ASN1 string... | |
| 569 buf[length] = rtc::CreateRandomId(); // ...and terminate it with junk. | |
| 570 int64_t res = rtc::ASN1TimeToSec(buf, length, entry.long_format); | |
| 571 LOG(LS_VERBOSE) << entry.string; | |
| 572 ASSERT_EQ(entry.want, res); | |
| 573 } | |
| 574 // Run all examples again, but with an invalid length. | |
| 575 for (const auto& entry : data) { | |
| 576 size_t length = strlen(entry.string); | |
| 577 memcpy(buf, entry.string, length); // Copy the ASN1 string... | |
| 578 buf[length] = rtc::CreateRandomId(); // ...and terminate it with junk. | |
| 579 int64_t res = rtc::ASN1TimeToSec(buf, length - 1, entry.long_format); | |
| 580 LOG(LS_VERBOSE) << entry.string; | |
| 581 ASSERT_EQ(-1, res); | |
| 582 } | |
| 583 } | |
| 584 | |
| 585 void TestExpireTime(int times) { | |
| 586 // We test just ECDSA here since what we're out to exercise is the | |
| 587 // interfaces for expiration setting and reading. | |
| 588 for (int i = 0; i < times; i++) { | |
| 589 // We limit the time to < 2^31 here, i.e., we stay before 2038, since else | |
| 590 // we hit time offset limitations in OpenSSL on some 32-bit systems. | |
| 591 time_t time_before_generation = time(nullptr); | |
| 592 time_t lifetime = | |
| 593 rtc::CreateRandomId() % (0x80000000 - time_before_generation); | |
| 594 rtc::KeyParams key_params = rtc::KeyParams::ECDSA(rtc::EC_NIST_P256); | |
| 595 SSLIdentity* identity = | |
| 596 rtc::SSLIdentity::GenerateWithExpiration("", key_params, lifetime); | |
| 597 time_t time_after_generation = time(nullptr); | |
| 598 EXPECT_LE(time_before_generation + lifetime, | |
| 599 identity->certificate().CertificateExpirationTime()); | |
| 600 EXPECT_GE(time_after_generation + lifetime, | |
| 601 identity->certificate().CertificateExpirationTime()); | |
| 602 delete identity; | |
| 603 } | |
| 604 } | |
| 605 }; | |
| 606 | |
| 607 TEST_F(SSLIdentityExpirationTest, TestASN1TimeToSec) { | |
| 608 TestASN1TimeToSec(); | |
| 609 } | |
| 610 | |
| 611 TEST_F(SSLIdentityExpirationTest, TestExpireTime) { | |
| 612 TestExpireTime(500); | |
| 613 } | |
| OLD | NEW |