OLD | NEW |
1 /* | 1 /* |
2 * Copyright 2011 The WebRTC Project Authors. All rights reserved. | 2 * Copyright 2011 The WebRTC Project Authors. All rights reserved. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
9 */ | 9 */ |
10 | 10 |
11 #ifndef WEBRTC_BASE_ROLLINGACCUMULATOR_H_ | 11 #ifndef WEBRTC_BASE_ROLLINGACCUMULATOR_H_ |
12 #define WEBRTC_BASE_ROLLINGACCUMULATOR_H_ | 12 #define WEBRTC_BASE_ROLLINGACCUMULATOR_H_ |
13 | 13 |
14 #include <algorithm> | |
15 #include <vector> | |
16 | 14 |
17 #include "webrtc/base/checks.h" | 15 // This header is deprecated and is just left here temporarily during |
18 #include "webrtc/base/constructormagic.h" | 16 // refactoring. See https://bugs.webrtc.org/7634 for more details. |
19 | 17 #include "webrtc/rtc_base/rollingaccumulator.h" |
20 namespace rtc { | |
21 | |
22 // RollingAccumulator stores and reports statistics | |
23 // over N most recent samples. | |
24 // | |
25 // T is assumed to be an int, long, double or float. | |
26 template<typename T> | |
27 class RollingAccumulator { | |
28 public: | |
29 explicit RollingAccumulator(size_t max_count) | |
30 : samples_(max_count) { | |
31 Reset(); | |
32 } | |
33 ~RollingAccumulator() { | |
34 } | |
35 | |
36 size_t max_count() const { | |
37 return samples_.size(); | |
38 } | |
39 | |
40 size_t count() const { | |
41 return count_; | |
42 } | |
43 | |
44 void Reset() { | |
45 count_ = 0U; | |
46 next_index_ = 0U; | |
47 sum_ = 0.0; | |
48 sum_2_ = 0.0; | |
49 max_ = T(); | |
50 max_stale_ = false; | |
51 min_ = T(); | |
52 min_stale_ = false; | |
53 } | |
54 | |
55 void AddSample(T sample) { | |
56 if (count_ == max_count()) { | |
57 // Remove oldest sample. | |
58 T sample_to_remove = samples_[next_index_]; | |
59 sum_ -= sample_to_remove; | |
60 sum_2_ -= static_cast<double>(sample_to_remove) * sample_to_remove; | |
61 if (sample_to_remove >= max_) { | |
62 max_stale_ = true; | |
63 } | |
64 if (sample_to_remove <= min_) { | |
65 min_stale_ = true; | |
66 } | |
67 } else { | |
68 // Increase count of samples. | |
69 ++count_; | |
70 } | |
71 // Add new sample. | |
72 samples_[next_index_] = sample; | |
73 sum_ += sample; | |
74 sum_2_ += static_cast<double>(sample) * sample; | |
75 if (count_ == 1 || sample >= max_) { | |
76 max_ = sample; | |
77 max_stale_ = false; | |
78 } | |
79 if (count_ == 1 || sample <= min_) { | |
80 min_ = sample; | |
81 min_stale_ = false; | |
82 } | |
83 // Update next_index_. | |
84 next_index_ = (next_index_ + 1) % max_count(); | |
85 } | |
86 | |
87 T ComputeSum() const { | |
88 return static_cast<T>(sum_); | |
89 } | |
90 | |
91 double ComputeMean() const { | |
92 if (count_ == 0) { | |
93 return 0.0; | |
94 } | |
95 return sum_ / count_; | |
96 } | |
97 | |
98 T ComputeMax() const { | |
99 if (max_stale_) { | |
100 RTC_DCHECK(count_ > 0) << | |
101 "It shouldn't be possible for max_stale_ && count_ == 0"; | |
102 max_ = samples_[next_index_]; | |
103 for (size_t i = 1u; i < count_; i++) { | |
104 max_ = std::max(max_, samples_[(next_index_ + i) % max_count()]); | |
105 } | |
106 max_stale_ = false; | |
107 } | |
108 return max_; | |
109 } | |
110 | |
111 T ComputeMin() const { | |
112 if (min_stale_) { | |
113 RTC_DCHECK(count_ > 0) << | |
114 "It shouldn't be possible for min_stale_ && count_ == 0"; | |
115 min_ = samples_[next_index_]; | |
116 for (size_t i = 1u; i < count_; i++) { | |
117 min_ = std::min(min_, samples_[(next_index_ + i) % max_count()]); | |
118 } | |
119 min_stale_ = false; | |
120 } | |
121 return min_; | |
122 } | |
123 | |
124 // O(n) time complexity. | |
125 // Weights nth sample with weight (learning_rate)^n. Learning_rate should be | |
126 // between (0.0, 1.0], otherwise the non-weighted mean is returned. | |
127 double ComputeWeightedMean(double learning_rate) const { | |
128 if (count_ < 1 || learning_rate <= 0.0 || learning_rate >= 1.0) { | |
129 return ComputeMean(); | |
130 } | |
131 double weighted_mean = 0.0; | |
132 double current_weight = 1.0; | |
133 double weight_sum = 0.0; | |
134 const size_t max_size = max_count(); | |
135 for (size_t i = 0; i < count_; ++i) { | |
136 current_weight *= learning_rate; | |
137 weight_sum += current_weight; | |
138 // Add max_size to prevent underflow. | |
139 size_t index = (next_index_ + max_size - i - 1) % max_size; | |
140 weighted_mean += current_weight * samples_[index]; | |
141 } | |
142 return weighted_mean / weight_sum; | |
143 } | |
144 | |
145 // Compute estimated variance. Estimation is more accurate | |
146 // as the number of samples grows. | |
147 double ComputeVariance() const { | |
148 if (count_ == 0) { | |
149 return 0.0; | |
150 } | |
151 // Var = E[x^2] - (E[x])^2 | |
152 double count_inv = 1.0 / count_; | |
153 double mean_2 = sum_2_ * count_inv; | |
154 double mean = sum_ * count_inv; | |
155 return mean_2 - (mean * mean); | |
156 } | |
157 | |
158 private: | |
159 size_t count_; | |
160 size_t next_index_; | |
161 double sum_; // Sum(x) - double to avoid overflow | |
162 double sum_2_; // Sum(x*x) - double to avoid overflow | |
163 mutable T max_; | |
164 mutable bool max_stale_; | |
165 mutable T min_; | |
166 mutable bool min_stale_; | |
167 std::vector<T> samples_; | |
168 | |
169 RTC_DISALLOW_COPY_AND_ASSIGN(RollingAccumulator); | |
170 }; | |
171 | |
172 } // namespace rtc | |
173 | 18 |
174 #endif // WEBRTC_BASE_ROLLINGACCUMULATOR_H_ | 19 #endif // WEBRTC_BASE_ROLLINGACCUMULATOR_H_ |
OLD | NEW |