Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(16)

Side by Side Diff: webrtc/base/physicalsocketserver.cc

Issue 2877023002: Move webrtc/{base => rtc_base} (Closed)
Patch Set: update presubmit.py and DEPS include rules Created 3 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « webrtc/base/physicalsocketserver.h ('k') | webrtc/base/physicalsocketserver_unittest.cc » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 /*
2 * Copyright 2004 The WebRTC Project Authors. All rights reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10 #include "webrtc/base/physicalsocketserver.h"
11
12 #if defined(_MSC_VER) && _MSC_VER < 1300
13 #pragma warning(disable:4786)
14 #endif
15
16 #ifdef MEMORY_SANITIZER
17 #include <sanitizer/msan_interface.h>
18 #endif
19
20 #if defined(WEBRTC_POSIX)
21 #include <string.h>
22 #include <errno.h>
23 #include <fcntl.h>
24 #if defined(WEBRTC_USE_EPOLL)
25 // "poll" will be used to wait for the signal dispatcher.
26 #include <poll.h>
27 #endif
28 #include <sys/ioctl.h>
29 #include <sys/time.h>
30 #include <sys/select.h>
31 #include <unistd.h>
32 #include <signal.h>
33 #endif
34
35 #if defined(WEBRTC_WIN)
36 #define WIN32_LEAN_AND_MEAN
37 #include <windows.h>
38 #include <winsock2.h>
39 #include <ws2tcpip.h>
40 #undef SetPort
41 #endif
42
43 #include <algorithm>
44 #include <map>
45
46 #include "webrtc/base/arraysize.h"
47 #include "webrtc/base/basictypes.h"
48 #include "webrtc/base/byteorder.h"
49 #include "webrtc/base/checks.h"
50 #include "webrtc/base/logging.h"
51 #include "webrtc/base/networkmonitor.h"
52 #include "webrtc/base/nullsocketserver.h"
53 #include "webrtc/base/timeutils.h"
54 #include "webrtc/base/win32socketinit.h"
55
56 #if defined(WEBRTC_POSIX)
57 #include <netinet/tcp.h> // for TCP_NODELAY
58 #define IP_MTU 14 // Until this is integrated from linux/in.h to netinet/in.h
59 typedef void* SockOptArg;
60
61 #endif // WEBRTC_POSIX
62
63 #if defined(WEBRTC_POSIX) && !defined(WEBRTC_MAC) && !defined(__native_client__)
64
65 int64_t GetSocketRecvTimestamp(int socket) {
66 struct timeval tv_ioctl;
67 int ret = ioctl(socket, SIOCGSTAMP, &tv_ioctl);
68 if (ret != 0)
69 return -1;
70 int64_t timestamp =
71 rtc::kNumMicrosecsPerSec * static_cast<int64_t>(tv_ioctl.tv_sec) +
72 static_cast<int64_t>(tv_ioctl.tv_usec);
73 return timestamp;
74 }
75
76 #else
77
78 int64_t GetSocketRecvTimestamp(int socket) {
79 return -1;
80 }
81 #endif
82
83 #if defined(WEBRTC_WIN)
84 typedef char* SockOptArg;
85 #endif
86
87 #if defined(WEBRTC_USE_EPOLL)
88 // POLLRDHUP / EPOLLRDHUP are only defined starting with Linux 2.6.17.
89 #if !defined(POLLRDHUP)
90 #define POLLRDHUP 0x2000
91 #endif
92 #if !defined(EPOLLRDHUP)
93 #define EPOLLRDHUP 0x2000
94 #endif
95 #endif
96
97 namespace rtc {
98
99 std::unique_ptr<SocketServer> SocketServer::CreateDefault() {
100 #if defined(__native_client__)
101 return std::unique_ptr<SocketServer>(new rtc::NullSocketServer);
102 #else
103 return std::unique_ptr<SocketServer>(new rtc::PhysicalSocketServer);
104 #endif
105 }
106
107 #if defined(WEBRTC_WIN)
108 // Standard MTUs, from RFC 1191
109 const uint16_t PACKET_MAXIMUMS[] = {
110 65535, // Theoretical maximum, Hyperchannel
111 32000, // Nothing
112 17914, // 16Mb IBM Token Ring
113 8166, // IEEE 802.4
114 // 4464, // IEEE 802.5 (4Mb max)
115 4352, // FDDI
116 // 2048, // Wideband Network
117 2002, // IEEE 802.5 (4Mb recommended)
118 // 1536, // Expermental Ethernet Networks
119 // 1500, // Ethernet, Point-to-Point (default)
120 1492, // IEEE 802.3
121 1006, // SLIP, ARPANET
122 // 576, // X.25 Networks
123 // 544, // DEC IP Portal
124 // 512, // NETBIOS
125 508, // IEEE 802/Source-Rt Bridge, ARCNET
126 296, // Point-to-Point (low delay)
127 68, // Official minimum
128 0, // End of list marker
129 };
130
131 static const int IP_HEADER_SIZE = 20u;
132 static const int IPV6_HEADER_SIZE = 40u;
133 static const int ICMP_HEADER_SIZE = 8u;
134 static const int ICMP_PING_TIMEOUT_MILLIS = 10000u;
135 #endif
136
137 PhysicalSocket::PhysicalSocket(PhysicalSocketServer* ss, SOCKET s)
138 : ss_(ss), s_(s), error_(0),
139 state_((s == INVALID_SOCKET) ? CS_CLOSED : CS_CONNECTED),
140 resolver_(nullptr) {
141 #if defined(WEBRTC_WIN)
142 // EnsureWinsockInit() ensures that winsock is initialized. The default
143 // version of this function doesn't do anything because winsock is
144 // initialized by constructor of a static object. If neccessary libjingle
145 // users can link it with a different version of this function by replacing
146 // win32socketinit.cc. See win32socketinit.cc for more details.
147 EnsureWinsockInit();
148 #endif
149 if (s_ != INVALID_SOCKET) {
150 SetEnabledEvents(DE_READ | DE_WRITE);
151
152 int type = SOCK_STREAM;
153 socklen_t len = sizeof(type);
154 const int res =
155 getsockopt(s_, SOL_SOCKET, SO_TYPE, (SockOptArg)&type, &len);
156 RTC_DCHECK_EQ(0, res);
157 udp_ = (SOCK_DGRAM == type);
158 }
159 }
160
161 PhysicalSocket::~PhysicalSocket() {
162 Close();
163 }
164
165 bool PhysicalSocket::Create(int family, int type) {
166 Close();
167 s_ = ::socket(family, type, 0);
168 udp_ = (SOCK_DGRAM == type);
169 UpdateLastError();
170 if (udp_) {
171 SetEnabledEvents(DE_READ | DE_WRITE);
172 }
173 return s_ != INVALID_SOCKET;
174 }
175
176 SocketAddress PhysicalSocket::GetLocalAddress() const {
177 sockaddr_storage addr_storage = {0};
178 socklen_t addrlen = sizeof(addr_storage);
179 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
180 int result = ::getsockname(s_, addr, &addrlen);
181 SocketAddress address;
182 if (result >= 0) {
183 SocketAddressFromSockAddrStorage(addr_storage, &address);
184 } else {
185 LOG(LS_WARNING) << "GetLocalAddress: unable to get local addr, socket="
186 << s_;
187 }
188 return address;
189 }
190
191 SocketAddress PhysicalSocket::GetRemoteAddress() const {
192 sockaddr_storage addr_storage = {0};
193 socklen_t addrlen = sizeof(addr_storage);
194 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
195 int result = ::getpeername(s_, addr, &addrlen);
196 SocketAddress address;
197 if (result >= 0) {
198 SocketAddressFromSockAddrStorage(addr_storage, &address);
199 } else {
200 LOG(LS_WARNING) << "GetRemoteAddress: unable to get remote addr, socket="
201 << s_;
202 }
203 return address;
204 }
205
206 int PhysicalSocket::Bind(const SocketAddress& bind_addr) {
207 SocketAddress copied_bind_addr = bind_addr;
208 // If a network binder is available, use it to bind a socket to an interface
209 // instead of bind(), since this is more reliable on an OS with a weak host
210 // model.
211 if (ss_->network_binder() && !bind_addr.IsAnyIP()) {
212 NetworkBindingResult result =
213 ss_->network_binder()->BindSocketToNetwork(s_, bind_addr.ipaddr());
214 if (result == NetworkBindingResult::SUCCESS) {
215 // Since the network binder handled binding the socket to the desired
216 // network interface, we don't need to (and shouldn't) include an IP in
217 // the bind() call; bind() just needs to assign a port.
218 copied_bind_addr.SetIP(GetAnyIP(copied_bind_addr.ipaddr().family()));
219 } else if (result == NetworkBindingResult::NOT_IMPLEMENTED) {
220 LOG(LS_INFO) << "Can't bind socket to network because "
221 "network binding is not implemented for this OS.";
222 } else {
223 if (bind_addr.IsLoopbackIP()) {
224 // If we couldn't bind to a loopback IP (which should only happen in
225 // test scenarios), continue on. This may be expected behavior.
226 LOG(LS_VERBOSE) << "Binding socket to loopback address "
227 << bind_addr.ipaddr().ToString()
228 << " failed; result: " << static_cast<int>(result);
229 } else {
230 LOG(LS_WARNING) << "Binding socket to network address "
231 << bind_addr.ipaddr().ToString()
232 << " failed; result: " << static_cast<int>(result);
233 // If a network binding was attempted and failed, we should stop here
234 // and not try to use the socket. Otherwise, we may end up sending
235 // packets with an invalid source address.
236 // See: https://bugs.chromium.org/p/webrtc/issues/detail?id=7026
237 return -1;
238 }
239 }
240 }
241 sockaddr_storage addr_storage;
242 size_t len = copied_bind_addr.ToSockAddrStorage(&addr_storage);
243 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
244 int err = ::bind(s_, addr, static_cast<int>(len));
245 UpdateLastError();
246 #if !defined(NDEBUG)
247 if (0 == err) {
248 dbg_addr_ = "Bound @ ";
249 dbg_addr_.append(GetLocalAddress().ToString());
250 }
251 #endif
252 return err;
253 }
254
255 int PhysicalSocket::Connect(const SocketAddress& addr) {
256 // TODO(pthatcher): Implicit creation is required to reconnect...
257 // ...but should we make it more explicit?
258 if (state_ != CS_CLOSED) {
259 SetError(EALREADY);
260 return SOCKET_ERROR;
261 }
262 if (addr.IsUnresolvedIP()) {
263 LOG(LS_VERBOSE) << "Resolving addr in PhysicalSocket::Connect";
264 resolver_ = new AsyncResolver();
265 resolver_->SignalDone.connect(this, &PhysicalSocket::OnResolveResult);
266 resolver_->Start(addr);
267 state_ = CS_CONNECTING;
268 return 0;
269 }
270
271 return DoConnect(addr);
272 }
273
274 int PhysicalSocket::DoConnect(const SocketAddress& connect_addr) {
275 if ((s_ == INVALID_SOCKET) &&
276 !Create(connect_addr.family(), SOCK_STREAM)) {
277 return SOCKET_ERROR;
278 }
279 sockaddr_storage addr_storage;
280 size_t len = connect_addr.ToSockAddrStorage(&addr_storage);
281 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
282 int err = ::connect(s_, addr, static_cast<int>(len));
283 UpdateLastError();
284 uint8_t events = DE_READ | DE_WRITE;
285 if (err == 0) {
286 state_ = CS_CONNECTED;
287 } else if (IsBlockingError(GetError())) {
288 state_ = CS_CONNECTING;
289 events |= DE_CONNECT;
290 } else {
291 return SOCKET_ERROR;
292 }
293
294 EnableEvents(events);
295 return 0;
296 }
297
298 int PhysicalSocket::GetError() const {
299 CritScope cs(&crit_);
300 return error_;
301 }
302
303 void PhysicalSocket::SetError(int error) {
304 CritScope cs(&crit_);
305 error_ = error;
306 }
307
308 AsyncSocket::ConnState PhysicalSocket::GetState() const {
309 return state_;
310 }
311
312 int PhysicalSocket::GetOption(Option opt, int* value) {
313 int slevel;
314 int sopt;
315 if (TranslateOption(opt, &slevel, &sopt) == -1)
316 return -1;
317 socklen_t optlen = sizeof(*value);
318 int ret = ::getsockopt(s_, slevel, sopt, (SockOptArg)value, &optlen);
319 if (ret != -1 && opt == OPT_DONTFRAGMENT) {
320 #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
321 *value = (*value != IP_PMTUDISC_DONT) ? 1 : 0;
322 #endif
323 }
324 return ret;
325 }
326
327 int PhysicalSocket::SetOption(Option opt, int value) {
328 int slevel;
329 int sopt;
330 if (TranslateOption(opt, &slevel, &sopt) == -1)
331 return -1;
332 if (opt == OPT_DONTFRAGMENT) {
333 #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
334 value = (value) ? IP_PMTUDISC_DO : IP_PMTUDISC_DONT;
335 #endif
336 }
337 return ::setsockopt(s_, slevel, sopt, (SockOptArg)&value, sizeof(value));
338 }
339
340 int PhysicalSocket::Send(const void* pv, size_t cb) {
341 int sent = DoSend(s_, reinterpret_cast<const char *>(pv),
342 static_cast<int>(cb),
343 #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
344 // Suppress SIGPIPE. Without this, attempting to send on a socket whose
345 // other end is closed will result in a SIGPIPE signal being raised to
346 // our process, which by default will terminate the process, which we
347 // don't want. By specifying this flag, we'll just get the error EPIPE
348 // instead and can handle the error gracefully.
349 MSG_NOSIGNAL
350 #else
351 0
352 #endif
353 );
354 UpdateLastError();
355 MaybeRemapSendError();
356 // We have seen minidumps where this may be false.
357 RTC_DCHECK(sent <= static_cast<int>(cb));
358 if ((sent > 0 && sent < static_cast<int>(cb)) ||
359 (sent < 0 && IsBlockingError(GetError()))) {
360 EnableEvents(DE_WRITE);
361 }
362 return sent;
363 }
364
365 int PhysicalSocket::SendTo(const void* buffer,
366 size_t length,
367 const SocketAddress& addr) {
368 sockaddr_storage saddr;
369 size_t len = addr.ToSockAddrStorage(&saddr);
370 int sent = DoSendTo(
371 s_, static_cast<const char *>(buffer), static_cast<int>(length),
372 #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
373 // Suppress SIGPIPE. See above for explanation.
374 MSG_NOSIGNAL,
375 #else
376 0,
377 #endif
378 reinterpret_cast<sockaddr*>(&saddr), static_cast<int>(len));
379 UpdateLastError();
380 MaybeRemapSendError();
381 // We have seen minidumps where this may be false.
382 RTC_DCHECK(sent <= static_cast<int>(length));
383 if ((sent > 0 && sent < static_cast<int>(length)) ||
384 (sent < 0 && IsBlockingError(GetError()))) {
385 EnableEvents(DE_WRITE);
386 }
387 return sent;
388 }
389
390 int PhysicalSocket::Recv(void* buffer, size_t length, int64_t* timestamp) {
391 int received = ::recv(s_, static_cast<char*>(buffer),
392 static_cast<int>(length), 0);
393 if ((received == 0) && (length != 0)) {
394 // Note: on graceful shutdown, recv can return 0. In this case, we
395 // pretend it is blocking, and then signal close, so that simplifying
396 // assumptions can be made about Recv.
397 LOG(LS_WARNING) << "EOF from socket; deferring close event";
398 // Must turn this back on so that the select() loop will notice the close
399 // event.
400 EnableEvents(DE_READ);
401 SetError(EWOULDBLOCK);
402 return SOCKET_ERROR;
403 }
404 if (timestamp) {
405 *timestamp = GetSocketRecvTimestamp(s_);
406 }
407 UpdateLastError();
408 int error = GetError();
409 bool success = (received >= 0) || IsBlockingError(error);
410 if (udp_ || success) {
411 EnableEvents(DE_READ);
412 }
413 if (!success) {
414 LOG_F(LS_VERBOSE) << "Error = " << error;
415 }
416 return received;
417 }
418
419 int PhysicalSocket::RecvFrom(void* buffer,
420 size_t length,
421 SocketAddress* out_addr,
422 int64_t* timestamp) {
423 sockaddr_storage addr_storage;
424 socklen_t addr_len = sizeof(addr_storage);
425 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
426 int received = ::recvfrom(s_, static_cast<char*>(buffer),
427 static_cast<int>(length), 0, addr, &addr_len);
428 if (timestamp) {
429 *timestamp = GetSocketRecvTimestamp(s_);
430 }
431 UpdateLastError();
432 if ((received >= 0) && (out_addr != nullptr))
433 SocketAddressFromSockAddrStorage(addr_storage, out_addr);
434 int error = GetError();
435 bool success = (received >= 0) || IsBlockingError(error);
436 if (udp_ || success) {
437 EnableEvents(DE_READ);
438 }
439 if (!success) {
440 LOG_F(LS_VERBOSE) << "Error = " << error;
441 }
442 return received;
443 }
444
445 int PhysicalSocket::Listen(int backlog) {
446 int err = ::listen(s_, backlog);
447 UpdateLastError();
448 if (err == 0) {
449 state_ = CS_CONNECTING;
450 EnableEvents(DE_ACCEPT);
451 #if !defined(NDEBUG)
452 dbg_addr_ = "Listening @ ";
453 dbg_addr_.append(GetLocalAddress().ToString());
454 #endif
455 }
456 return err;
457 }
458
459 AsyncSocket* PhysicalSocket::Accept(SocketAddress* out_addr) {
460 // Always re-subscribe DE_ACCEPT to make sure new incoming connections will
461 // trigger an event even if DoAccept returns an error here.
462 EnableEvents(DE_ACCEPT);
463 sockaddr_storage addr_storage;
464 socklen_t addr_len = sizeof(addr_storage);
465 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
466 SOCKET s = DoAccept(s_, addr, &addr_len);
467 UpdateLastError();
468 if (s == INVALID_SOCKET)
469 return nullptr;
470 if (out_addr != nullptr)
471 SocketAddressFromSockAddrStorage(addr_storage, out_addr);
472 return ss_->WrapSocket(s);
473 }
474
475 int PhysicalSocket::Close() {
476 if (s_ == INVALID_SOCKET)
477 return 0;
478 int err = ::closesocket(s_);
479 UpdateLastError();
480 s_ = INVALID_SOCKET;
481 state_ = CS_CLOSED;
482 SetEnabledEvents(0);
483 if (resolver_) {
484 resolver_->Destroy(false);
485 resolver_ = nullptr;
486 }
487 return err;
488 }
489
490 SOCKET PhysicalSocket::DoAccept(SOCKET socket,
491 sockaddr* addr,
492 socklen_t* addrlen) {
493 return ::accept(socket, addr, addrlen);
494 }
495
496 int PhysicalSocket::DoSend(SOCKET socket, const char* buf, int len, int flags) {
497 return ::send(socket, buf, len, flags);
498 }
499
500 int PhysicalSocket::DoSendTo(SOCKET socket,
501 const char* buf,
502 int len,
503 int flags,
504 const struct sockaddr* dest_addr,
505 socklen_t addrlen) {
506 return ::sendto(socket, buf, len, flags, dest_addr, addrlen);
507 }
508
509 void PhysicalSocket::OnResolveResult(AsyncResolverInterface* resolver) {
510 if (resolver != resolver_) {
511 return;
512 }
513
514 int error = resolver_->GetError();
515 if (error == 0) {
516 error = DoConnect(resolver_->address());
517 } else {
518 Close();
519 }
520
521 if (error) {
522 SetError(error);
523 SignalCloseEvent(this, error);
524 }
525 }
526
527 void PhysicalSocket::UpdateLastError() {
528 SetError(LAST_SYSTEM_ERROR);
529 }
530
531 void PhysicalSocket::MaybeRemapSendError() {
532 #if defined(WEBRTC_MAC)
533 // https://developer.apple.com/library/mac/documentation/Darwin/
534 // Reference/ManPages/man2/sendto.2.html
535 // ENOBUFS - The output queue for a network interface is full.
536 // This generally indicates that the interface has stopped sending,
537 // but may be caused by transient congestion.
538 if (GetError() == ENOBUFS) {
539 SetError(EWOULDBLOCK);
540 }
541 #endif
542 }
543
544 void PhysicalSocket::SetEnabledEvents(uint8_t events) {
545 enabled_events_ = events;
546 }
547
548 void PhysicalSocket::EnableEvents(uint8_t events) {
549 enabled_events_ |= events;
550 }
551
552 void PhysicalSocket::DisableEvents(uint8_t events) {
553 enabled_events_ &= ~events;
554 }
555
556 int PhysicalSocket::TranslateOption(Option opt, int* slevel, int* sopt) {
557 switch (opt) {
558 case OPT_DONTFRAGMENT:
559 #if defined(WEBRTC_WIN)
560 *slevel = IPPROTO_IP;
561 *sopt = IP_DONTFRAGMENT;
562 break;
563 #elif defined(WEBRTC_MAC) || defined(BSD) || defined(__native_client__)
564 LOG(LS_WARNING) << "Socket::OPT_DONTFRAGMENT not supported.";
565 return -1;
566 #elif defined(WEBRTC_POSIX)
567 *slevel = IPPROTO_IP;
568 *sopt = IP_MTU_DISCOVER;
569 break;
570 #endif
571 case OPT_RCVBUF:
572 *slevel = SOL_SOCKET;
573 *sopt = SO_RCVBUF;
574 break;
575 case OPT_SNDBUF:
576 *slevel = SOL_SOCKET;
577 *sopt = SO_SNDBUF;
578 break;
579 case OPT_NODELAY:
580 *slevel = IPPROTO_TCP;
581 *sopt = TCP_NODELAY;
582 break;
583 case OPT_DSCP:
584 LOG(LS_WARNING) << "Socket::OPT_DSCP not supported.";
585 return -1;
586 case OPT_RTP_SENDTIME_EXTN_ID:
587 return -1; // No logging is necessary as this not a OS socket option.
588 default:
589 RTC_NOTREACHED();
590 return -1;
591 }
592 return 0;
593 }
594
595 SocketDispatcher::SocketDispatcher(PhysicalSocketServer *ss)
596 #if defined(WEBRTC_WIN)
597 : PhysicalSocket(ss), id_(0), signal_close_(false)
598 #else
599 : PhysicalSocket(ss)
600 #endif
601 {
602 }
603
604 SocketDispatcher::SocketDispatcher(SOCKET s, PhysicalSocketServer *ss)
605 #if defined(WEBRTC_WIN)
606 : PhysicalSocket(ss, s), id_(0), signal_close_(false)
607 #else
608 : PhysicalSocket(ss, s)
609 #endif
610 {
611 }
612
613 SocketDispatcher::~SocketDispatcher() {
614 Close();
615 }
616
617 bool SocketDispatcher::Initialize() {
618 RTC_DCHECK(s_ != INVALID_SOCKET);
619 // Must be a non-blocking
620 #if defined(WEBRTC_WIN)
621 u_long argp = 1;
622 ioctlsocket(s_, FIONBIO, &argp);
623 #elif defined(WEBRTC_POSIX)
624 fcntl(s_, F_SETFL, fcntl(s_, F_GETFL, 0) | O_NONBLOCK);
625 #endif
626 #if defined(WEBRTC_IOS)
627 // iOS may kill sockets when the app is moved to the background
628 // (specifically, if the app doesn't use the "voip" UIBackgroundMode). When
629 // we attempt to write to such a socket, SIGPIPE will be raised, which by
630 // default will terminate the process, which we don't want. By specifying
631 // this socket option, SIGPIPE will be disabled for the socket.
632 int value = 1;
633 ::setsockopt(s_, SOL_SOCKET, SO_NOSIGPIPE, &value, sizeof(value));
634 #endif
635 ss_->Add(this);
636 return true;
637 }
638
639 bool SocketDispatcher::Create(int type) {
640 return Create(AF_INET, type);
641 }
642
643 bool SocketDispatcher::Create(int family, int type) {
644 // Change the socket to be non-blocking.
645 if (!PhysicalSocket::Create(family, type))
646 return false;
647
648 if (!Initialize())
649 return false;
650
651 #if defined(WEBRTC_WIN)
652 do { id_ = ++next_id_; } while (id_ == 0);
653 #endif
654 return true;
655 }
656
657 #if defined(WEBRTC_WIN)
658
659 WSAEVENT SocketDispatcher::GetWSAEvent() {
660 return WSA_INVALID_EVENT;
661 }
662
663 SOCKET SocketDispatcher::GetSocket() {
664 return s_;
665 }
666
667 bool SocketDispatcher::CheckSignalClose() {
668 if (!signal_close_)
669 return false;
670
671 char ch;
672 if (recv(s_, &ch, 1, MSG_PEEK) > 0)
673 return false;
674
675 state_ = CS_CLOSED;
676 signal_close_ = false;
677 SignalCloseEvent(this, signal_err_);
678 return true;
679 }
680
681 int SocketDispatcher::next_id_ = 0;
682
683 #elif defined(WEBRTC_POSIX)
684
685 int SocketDispatcher::GetDescriptor() {
686 return s_;
687 }
688
689 bool SocketDispatcher::IsDescriptorClosed() {
690 if (udp_) {
691 // The MSG_PEEK trick doesn't work for UDP, since (at least in some
692 // circumstances) it requires reading an entire UDP packet, which would be
693 // bad for performance here. So, just check whether |s_| has been closed,
694 // which should be sufficient.
695 return s_ == INVALID_SOCKET;
696 }
697 // We don't have a reliable way of distinguishing end-of-stream
698 // from readability. So test on each readable call. Is this
699 // inefficient? Probably.
700 char ch;
701 ssize_t res = ::recv(s_, &ch, 1, MSG_PEEK);
702 if (res > 0) {
703 // Data available, so not closed.
704 return false;
705 } else if (res == 0) {
706 // EOF, so closed.
707 return true;
708 } else { // error
709 switch (errno) {
710 // Returned if we've already closed s_.
711 case EBADF:
712 // Returned during ungraceful peer shutdown.
713 case ECONNRESET:
714 return true;
715 // The normal blocking error; don't log anything.
716 case EWOULDBLOCK:
717 // Interrupted system call.
718 case EINTR:
719 return false;
720 default:
721 // Assume that all other errors are just blocking errors, meaning the
722 // connection is still good but we just can't read from it right now.
723 // This should only happen when connecting (and at most once), because
724 // in all other cases this function is only called if the file
725 // descriptor is already known to be in the readable state. However,
726 // it's not necessary a problem if we spuriously interpret a
727 // "connection lost"-type error as a blocking error, because typically
728 // the next recv() will get EOF, so we'll still eventually notice that
729 // the socket is closed.
730 LOG_ERR(LS_WARNING) << "Assuming benign blocking error";
731 return false;
732 }
733 }
734 }
735
736 #endif // WEBRTC_POSIX
737
738 uint32_t SocketDispatcher::GetRequestedEvents() {
739 return enabled_events();
740 }
741
742 void SocketDispatcher::OnPreEvent(uint32_t ff) {
743 if ((ff & DE_CONNECT) != 0)
744 state_ = CS_CONNECTED;
745
746 #if defined(WEBRTC_WIN)
747 // We set CS_CLOSED from CheckSignalClose.
748 #elif defined(WEBRTC_POSIX)
749 if ((ff & DE_CLOSE) != 0)
750 state_ = CS_CLOSED;
751 #endif
752 }
753
754 #if defined(WEBRTC_WIN)
755
756 void SocketDispatcher::OnEvent(uint32_t ff, int err) {
757 int cache_id = id_;
758 // Make sure we deliver connect/accept first. Otherwise, consumers may see
759 // something like a READ followed by a CONNECT, which would be odd.
760 if (((ff & DE_CONNECT) != 0) && (id_ == cache_id)) {
761 if (ff != DE_CONNECT)
762 LOG(LS_VERBOSE) << "Signalled with DE_CONNECT: " << ff;
763 DisableEvents(DE_CONNECT);
764 #if !defined(NDEBUG)
765 dbg_addr_ = "Connected @ ";
766 dbg_addr_.append(GetRemoteAddress().ToString());
767 #endif
768 SignalConnectEvent(this);
769 }
770 if (((ff & DE_ACCEPT) != 0) && (id_ == cache_id)) {
771 DisableEvents(DE_ACCEPT);
772 SignalReadEvent(this);
773 }
774 if ((ff & DE_READ) != 0) {
775 DisableEvents(DE_READ);
776 SignalReadEvent(this);
777 }
778 if (((ff & DE_WRITE) != 0) && (id_ == cache_id)) {
779 DisableEvents(DE_WRITE);
780 SignalWriteEvent(this);
781 }
782 if (((ff & DE_CLOSE) != 0) && (id_ == cache_id)) {
783 signal_close_ = true;
784 signal_err_ = err;
785 }
786 }
787
788 #elif defined(WEBRTC_POSIX)
789
790 void SocketDispatcher::OnEvent(uint32_t ff, int err) {
791 #if defined(WEBRTC_USE_EPOLL)
792 // Remember currently enabled events so we can combine multiple changes
793 // into one update call later.
794 // The signal handlers might re-enable events disabled here, so we can't
795 // keep a list of events to disable at the end of the method. This list
796 // would not be updated with the events enabled by the signal handlers.
797 StartBatchedEventUpdates();
798 #endif
799 // Make sure we deliver connect/accept first. Otherwise, consumers may see
800 // something like a READ followed by a CONNECT, which would be odd.
801 if ((ff & DE_CONNECT) != 0) {
802 DisableEvents(DE_CONNECT);
803 SignalConnectEvent(this);
804 }
805 if ((ff & DE_ACCEPT) != 0) {
806 DisableEvents(DE_ACCEPT);
807 SignalReadEvent(this);
808 }
809 if ((ff & DE_READ) != 0) {
810 DisableEvents(DE_READ);
811 SignalReadEvent(this);
812 }
813 if ((ff & DE_WRITE) != 0) {
814 DisableEvents(DE_WRITE);
815 SignalWriteEvent(this);
816 }
817 if ((ff & DE_CLOSE) != 0) {
818 // The socket is now dead to us, so stop checking it.
819 SetEnabledEvents(0);
820 SignalCloseEvent(this, err);
821 }
822 #if defined(WEBRTC_USE_EPOLL)
823 FinishBatchedEventUpdates();
824 #endif
825 }
826
827 #endif // WEBRTC_POSIX
828
829 #if defined(WEBRTC_USE_EPOLL)
830
831 static int GetEpollEvents(uint32_t ff) {
832 int events = 0;
833 if (ff & (DE_READ | DE_ACCEPT)) {
834 events |= EPOLLIN;
835 }
836 if (ff & (DE_WRITE | DE_CONNECT)) {
837 events |= EPOLLOUT;
838 }
839 return events;
840 }
841
842 void SocketDispatcher::StartBatchedEventUpdates() {
843 RTC_DCHECK_EQ(saved_enabled_events_, -1);
844 saved_enabled_events_ = enabled_events();
845 }
846
847 void SocketDispatcher::FinishBatchedEventUpdates() {
848 RTC_DCHECK_NE(saved_enabled_events_, -1);
849 uint8_t old_events = static_cast<uint8_t>(saved_enabled_events_);
850 saved_enabled_events_ = -1;
851 MaybeUpdateDispatcher(old_events);
852 }
853
854 void SocketDispatcher::MaybeUpdateDispatcher(uint8_t old_events) {
855 if (GetEpollEvents(enabled_events()) != GetEpollEvents(old_events) &&
856 saved_enabled_events_ == -1) {
857 ss_->Update(this);
858 }
859 }
860
861 void SocketDispatcher::SetEnabledEvents(uint8_t events) {
862 uint8_t old_events = enabled_events();
863 PhysicalSocket::SetEnabledEvents(events);
864 MaybeUpdateDispatcher(old_events);
865 }
866
867 void SocketDispatcher::EnableEvents(uint8_t events) {
868 uint8_t old_events = enabled_events();
869 PhysicalSocket::EnableEvents(events);
870 MaybeUpdateDispatcher(old_events);
871 }
872
873 void SocketDispatcher::DisableEvents(uint8_t events) {
874 uint8_t old_events = enabled_events();
875 PhysicalSocket::DisableEvents(events);
876 MaybeUpdateDispatcher(old_events);
877 }
878
879 #endif // WEBRTC_USE_EPOLL
880
881 int SocketDispatcher::Close() {
882 if (s_ == INVALID_SOCKET)
883 return 0;
884
885 #if defined(WEBRTC_WIN)
886 id_ = 0;
887 signal_close_ = false;
888 #endif
889 ss_->Remove(this);
890 return PhysicalSocket::Close();
891 }
892
893 #if defined(WEBRTC_POSIX)
894 class EventDispatcher : public Dispatcher {
895 public:
896 EventDispatcher(PhysicalSocketServer* ss) : ss_(ss), fSignaled_(false) {
897 if (pipe(afd_) < 0)
898 LOG(LERROR) << "pipe failed";
899 ss_->Add(this);
900 }
901
902 ~EventDispatcher() override {
903 ss_->Remove(this);
904 close(afd_[0]);
905 close(afd_[1]);
906 }
907
908 virtual void Signal() {
909 CritScope cs(&crit_);
910 if (!fSignaled_) {
911 const uint8_t b[1] = {0};
912 const ssize_t res = write(afd_[1], b, sizeof(b));
913 RTC_DCHECK_EQ(1, res);
914 fSignaled_ = true;
915 }
916 }
917
918 uint32_t GetRequestedEvents() override { return DE_READ; }
919
920 void OnPreEvent(uint32_t ff) override {
921 // It is not possible to perfectly emulate an auto-resetting event with
922 // pipes. This simulates it by resetting before the event is handled.
923
924 CritScope cs(&crit_);
925 if (fSignaled_) {
926 uint8_t b[4]; // Allow for reading more than 1 byte, but expect 1.
927 const ssize_t res = read(afd_[0], b, sizeof(b));
928 RTC_DCHECK_EQ(1, res);
929 fSignaled_ = false;
930 }
931 }
932
933 void OnEvent(uint32_t ff, int err) override { RTC_NOTREACHED(); }
934
935 int GetDescriptor() override { return afd_[0]; }
936
937 bool IsDescriptorClosed() override { return false; }
938
939 private:
940 PhysicalSocketServer *ss_;
941 int afd_[2];
942 bool fSignaled_;
943 CriticalSection crit_;
944 };
945
946 // These two classes use the self-pipe trick to deliver POSIX signals to our
947 // select loop. This is the only safe, reliable, cross-platform way to do
948 // non-trivial things with a POSIX signal in an event-driven program (until
949 // proper pselect() implementations become ubiquitous).
950
951 class PosixSignalHandler {
952 public:
953 // POSIX only specifies 32 signals, but in principle the system might have
954 // more and the programmer might choose to use them, so we size our array
955 // for 128.
956 static const int kNumPosixSignals = 128;
957
958 // There is just a single global instance. (Signal handlers do not get any
959 // sort of user-defined void * parameter, so they can't access anything that
960 // isn't global.)
961 static PosixSignalHandler* Instance() {
962 RTC_DEFINE_STATIC_LOCAL(PosixSignalHandler, instance, ());
963 return &instance;
964 }
965
966 // Returns true if the given signal number is set.
967 bool IsSignalSet(int signum) const {
968 RTC_DCHECK(signum < static_cast<int>(arraysize(received_signal_)));
969 if (signum < static_cast<int>(arraysize(received_signal_))) {
970 return received_signal_[signum];
971 } else {
972 return false;
973 }
974 }
975
976 // Clears the given signal number.
977 void ClearSignal(int signum) {
978 RTC_DCHECK(signum < static_cast<int>(arraysize(received_signal_)));
979 if (signum < static_cast<int>(arraysize(received_signal_))) {
980 received_signal_[signum] = false;
981 }
982 }
983
984 // Returns the file descriptor to monitor for signal events.
985 int GetDescriptor() const {
986 return afd_[0];
987 }
988
989 // This is called directly from our real signal handler, so it must be
990 // signal-handler-safe. That means it cannot assume anything about the
991 // user-level state of the process, since the handler could be executed at any
992 // time on any thread.
993 void OnPosixSignalReceived(int signum) {
994 if (signum >= static_cast<int>(arraysize(received_signal_))) {
995 // We don't have space in our array for this.
996 return;
997 }
998 // Set a flag saying we've seen this signal.
999 received_signal_[signum] = true;
1000 // Notify application code that we got a signal.
1001 const uint8_t b[1] = {0};
1002 if (-1 == write(afd_[1], b, sizeof(b))) {
1003 // Nothing we can do here. If there's an error somehow then there's
1004 // nothing we can safely do from a signal handler.
1005 // No, we can't even safely log it.
1006 // But, we still have to check the return value here. Otherwise,
1007 // GCC 4.4.1 complains ignoring return value. Even (void) doesn't help.
1008 return;
1009 }
1010 }
1011
1012 private:
1013 PosixSignalHandler() {
1014 if (pipe(afd_) < 0) {
1015 LOG_ERR(LS_ERROR) << "pipe failed";
1016 return;
1017 }
1018 if (fcntl(afd_[0], F_SETFL, O_NONBLOCK) < 0) {
1019 LOG_ERR(LS_WARNING) << "fcntl #1 failed";
1020 }
1021 if (fcntl(afd_[1], F_SETFL, O_NONBLOCK) < 0) {
1022 LOG_ERR(LS_WARNING) << "fcntl #2 failed";
1023 }
1024 memset(const_cast<void *>(static_cast<volatile void *>(received_signal_)),
1025 0,
1026 sizeof(received_signal_));
1027 }
1028
1029 ~PosixSignalHandler() {
1030 int fd1 = afd_[0];
1031 int fd2 = afd_[1];
1032 // We clobber the stored file descriptor numbers here or else in principle
1033 // a signal that happens to be delivered during application termination
1034 // could erroneously write a zero byte to an unrelated file handle in
1035 // OnPosixSignalReceived() if some other file happens to be opened later
1036 // during shutdown and happens to be given the same file descriptor number
1037 // as our pipe had. Unfortunately even with this precaution there is still a
1038 // race where that could occur if said signal happens to be handled
1039 // concurrently with this code and happens to have already read the value of
1040 // afd_[1] from memory before we clobber it, but that's unlikely.
1041 afd_[0] = -1;
1042 afd_[1] = -1;
1043 close(fd1);
1044 close(fd2);
1045 }
1046
1047 int afd_[2];
1048 // These are boolean flags that will be set in our signal handler and read
1049 // and cleared from Wait(). There is a race involved in this, but it is
1050 // benign. The signal handler sets the flag before signaling the pipe, so
1051 // we'll never end up blocking in select() while a flag is still true.
1052 // However, if two of the same signal arrive close to each other then it's
1053 // possible that the second time the handler may set the flag while it's still
1054 // true, meaning that signal will be missed. But the first occurrence of it
1055 // will still be handled, so this isn't a problem.
1056 // Volatile is not necessary here for correctness, but this data _is_ volatile
1057 // so I've marked it as such.
1058 volatile uint8_t received_signal_[kNumPosixSignals];
1059 };
1060
1061 class PosixSignalDispatcher : public Dispatcher {
1062 public:
1063 PosixSignalDispatcher(PhysicalSocketServer *owner) : owner_(owner) {
1064 owner_->Add(this);
1065 }
1066
1067 ~PosixSignalDispatcher() override {
1068 owner_->Remove(this);
1069 }
1070
1071 uint32_t GetRequestedEvents() override { return DE_READ; }
1072
1073 void OnPreEvent(uint32_t ff) override {
1074 // Events might get grouped if signals come very fast, so we read out up to
1075 // 16 bytes to make sure we keep the pipe empty.
1076 uint8_t b[16];
1077 ssize_t ret = read(GetDescriptor(), b, sizeof(b));
1078 if (ret < 0) {
1079 LOG_ERR(LS_WARNING) << "Error in read()";
1080 } else if (ret == 0) {
1081 LOG(LS_WARNING) << "Should have read at least one byte";
1082 }
1083 }
1084
1085 void OnEvent(uint32_t ff, int err) override {
1086 for (int signum = 0; signum < PosixSignalHandler::kNumPosixSignals;
1087 ++signum) {
1088 if (PosixSignalHandler::Instance()->IsSignalSet(signum)) {
1089 PosixSignalHandler::Instance()->ClearSignal(signum);
1090 HandlerMap::iterator i = handlers_.find(signum);
1091 if (i == handlers_.end()) {
1092 // This can happen if a signal is delivered to our process at around
1093 // the same time as we unset our handler for it. It is not an error
1094 // condition, but it's unusual enough to be worth logging.
1095 LOG(LS_INFO) << "Received signal with no handler: " << signum;
1096 } else {
1097 // Otherwise, execute our handler.
1098 (*i->second)(signum);
1099 }
1100 }
1101 }
1102 }
1103
1104 int GetDescriptor() override {
1105 return PosixSignalHandler::Instance()->GetDescriptor();
1106 }
1107
1108 bool IsDescriptorClosed() override { return false; }
1109
1110 void SetHandler(int signum, void (*handler)(int)) {
1111 handlers_[signum] = handler;
1112 }
1113
1114 void ClearHandler(int signum) {
1115 handlers_.erase(signum);
1116 }
1117
1118 bool HasHandlers() {
1119 return !handlers_.empty();
1120 }
1121
1122 private:
1123 typedef std::map<int, void (*)(int)> HandlerMap;
1124
1125 HandlerMap handlers_;
1126 // Our owner.
1127 PhysicalSocketServer *owner_;
1128 };
1129
1130 #endif // WEBRTC_POSIX
1131
1132 #if defined(WEBRTC_WIN)
1133 static uint32_t FlagsToEvents(uint32_t events) {
1134 uint32_t ffFD = FD_CLOSE;
1135 if (events & DE_READ)
1136 ffFD |= FD_READ;
1137 if (events & DE_WRITE)
1138 ffFD |= FD_WRITE;
1139 if (events & DE_CONNECT)
1140 ffFD |= FD_CONNECT;
1141 if (events & DE_ACCEPT)
1142 ffFD |= FD_ACCEPT;
1143 return ffFD;
1144 }
1145
1146 class EventDispatcher : public Dispatcher {
1147 public:
1148 EventDispatcher(PhysicalSocketServer *ss) : ss_(ss) {
1149 hev_ = WSACreateEvent();
1150 if (hev_) {
1151 ss_->Add(this);
1152 }
1153 }
1154
1155 ~EventDispatcher() {
1156 if (hev_ != nullptr) {
1157 ss_->Remove(this);
1158 WSACloseEvent(hev_);
1159 hev_ = nullptr;
1160 }
1161 }
1162
1163 virtual void Signal() {
1164 if (hev_ != nullptr)
1165 WSASetEvent(hev_);
1166 }
1167
1168 virtual uint32_t GetRequestedEvents() { return 0; }
1169
1170 virtual void OnPreEvent(uint32_t ff) { WSAResetEvent(hev_); }
1171
1172 virtual void OnEvent(uint32_t ff, int err) {}
1173
1174 virtual WSAEVENT GetWSAEvent() {
1175 return hev_;
1176 }
1177
1178 virtual SOCKET GetSocket() {
1179 return INVALID_SOCKET;
1180 }
1181
1182 virtual bool CheckSignalClose() { return false; }
1183
1184 private:
1185 PhysicalSocketServer* ss_;
1186 WSAEVENT hev_;
1187 };
1188 #endif // WEBRTC_WIN
1189
1190 // Sets the value of a boolean value to false when signaled.
1191 class Signaler : public EventDispatcher {
1192 public:
1193 Signaler(PhysicalSocketServer* ss, bool* pf)
1194 : EventDispatcher(ss), pf_(pf) {
1195 }
1196 ~Signaler() override { }
1197
1198 void OnEvent(uint32_t ff, int err) override {
1199 if (pf_)
1200 *pf_ = false;
1201 }
1202
1203 private:
1204 bool *pf_;
1205 };
1206
1207 PhysicalSocketServer::PhysicalSocketServer()
1208 : fWait_(false) {
1209 #if defined(WEBRTC_USE_EPOLL)
1210 // Since Linux 2.6.8, the size argument is ignored, but must be greater than
1211 // zero. Before that the size served as hint to the kernel for the amount of
1212 // space to initially allocate in internal data structures.
1213 epoll_fd_ = epoll_create(FD_SETSIZE);
1214 if (epoll_fd_ == -1) {
1215 // Not an error, will fall back to "select" below.
1216 LOG_E(LS_WARNING, EN, errno) << "epoll_create";
1217 epoll_fd_ = INVALID_SOCKET;
1218 }
1219 #endif
1220 signal_wakeup_ = new Signaler(this, &fWait_);
1221 #if defined(WEBRTC_WIN)
1222 socket_ev_ = WSACreateEvent();
1223 #endif
1224 }
1225
1226 PhysicalSocketServer::~PhysicalSocketServer() {
1227 #if defined(WEBRTC_WIN)
1228 WSACloseEvent(socket_ev_);
1229 #endif
1230 #if defined(WEBRTC_POSIX)
1231 signal_dispatcher_.reset();
1232 #endif
1233 delete signal_wakeup_;
1234 #if defined(WEBRTC_USE_EPOLL)
1235 if (epoll_fd_ != INVALID_SOCKET) {
1236 close(epoll_fd_);
1237 }
1238 #endif
1239 RTC_DCHECK(dispatchers_.empty());
1240 }
1241
1242 void PhysicalSocketServer::WakeUp() {
1243 signal_wakeup_->Signal();
1244 }
1245
1246 Socket* PhysicalSocketServer::CreateSocket(int type) {
1247 return CreateSocket(AF_INET, type);
1248 }
1249
1250 Socket* PhysicalSocketServer::CreateSocket(int family, int type) {
1251 PhysicalSocket* socket = new PhysicalSocket(this);
1252 if (socket->Create(family, type)) {
1253 return socket;
1254 } else {
1255 delete socket;
1256 return nullptr;
1257 }
1258 }
1259
1260 AsyncSocket* PhysicalSocketServer::CreateAsyncSocket(int type) {
1261 return CreateAsyncSocket(AF_INET, type);
1262 }
1263
1264 AsyncSocket* PhysicalSocketServer::CreateAsyncSocket(int family, int type) {
1265 SocketDispatcher* dispatcher = new SocketDispatcher(this);
1266 if (dispatcher->Create(family, type)) {
1267 return dispatcher;
1268 } else {
1269 delete dispatcher;
1270 return nullptr;
1271 }
1272 }
1273
1274 AsyncSocket* PhysicalSocketServer::WrapSocket(SOCKET s) {
1275 SocketDispatcher* dispatcher = new SocketDispatcher(s, this);
1276 if (dispatcher->Initialize()) {
1277 return dispatcher;
1278 } else {
1279 delete dispatcher;
1280 return nullptr;
1281 }
1282 }
1283
1284 void PhysicalSocketServer::Add(Dispatcher *pdispatcher) {
1285 CritScope cs(&crit_);
1286 if (processing_dispatchers_) {
1287 // A dispatcher is being added while a "Wait" call is processing the
1288 // list of socket events.
1289 // Defer adding to "dispatchers_" set until processing is done to avoid
1290 // invalidating the iterator in "Wait".
1291 pending_remove_dispatchers_.erase(pdispatcher);
1292 pending_add_dispatchers_.insert(pdispatcher);
1293 } else {
1294 dispatchers_.insert(pdispatcher);
1295 }
1296 #if defined(WEBRTC_USE_EPOLL)
1297 if (epoll_fd_ != INVALID_SOCKET) {
1298 AddEpoll(pdispatcher);
1299 }
1300 #endif // WEBRTC_USE_EPOLL
1301 }
1302
1303 void PhysicalSocketServer::Remove(Dispatcher *pdispatcher) {
1304 CritScope cs(&crit_);
1305 if (processing_dispatchers_) {
1306 // A dispatcher is being removed while a "Wait" call is processing the
1307 // list of socket events.
1308 // Defer removal from "dispatchers_" set until processing is done to avoid
1309 // invalidating the iterator in "Wait".
1310 if (!pending_add_dispatchers_.erase(pdispatcher) &&
1311 dispatchers_.find(pdispatcher) == dispatchers_.end()) {
1312 LOG(LS_WARNING) << "PhysicalSocketServer asked to remove a unknown "
1313 << "dispatcher, potentially from a duplicate call to "
1314 << "Add.";
1315 return;
1316 }
1317
1318 pending_remove_dispatchers_.insert(pdispatcher);
1319 } else if (!dispatchers_.erase(pdispatcher)) {
1320 LOG(LS_WARNING) << "PhysicalSocketServer asked to remove a unknown "
1321 << "dispatcher, potentially from a duplicate call to Add.";
1322 return;
1323 }
1324 #if defined(WEBRTC_USE_EPOLL)
1325 if (epoll_fd_ != INVALID_SOCKET) {
1326 RemoveEpoll(pdispatcher);
1327 }
1328 #endif // WEBRTC_USE_EPOLL
1329 }
1330
1331 void PhysicalSocketServer::Update(Dispatcher* pdispatcher) {
1332 #if defined(WEBRTC_USE_EPOLL)
1333 if (epoll_fd_ == INVALID_SOCKET) {
1334 return;
1335 }
1336
1337 CritScope cs(&crit_);
1338 if (dispatchers_.find(pdispatcher) == dispatchers_.end()) {
1339 return;
1340 }
1341
1342 UpdateEpoll(pdispatcher);
1343 #endif
1344 }
1345
1346 void PhysicalSocketServer::AddRemovePendingDispatchers() {
1347 if (!pending_add_dispatchers_.empty()) {
1348 for (Dispatcher* pdispatcher : pending_add_dispatchers_) {
1349 dispatchers_.insert(pdispatcher);
1350 }
1351 pending_add_dispatchers_.clear();
1352 }
1353
1354 if (!pending_remove_dispatchers_.empty()) {
1355 for (Dispatcher* pdispatcher : pending_remove_dispatchers_) {
1356 dispatchers_.erase(pdispatcher);
1357 }
1358 pending_remove_dispatchers_.clear();
1359 }
1360 }
1361
1362 #if defined(WEBRTC_POSIX)
1363
1364 bool PhysicalSocketServer::Wait(int cmsWait, bool process_io) {
1365 #if defined(WEBRTC_USE_EPOLL)
1366 // We don't keep a dedicated "epoll" descriptor containing only the non-IO
1367 // (i.e. signaling) dispatcher, so "poll" will be used instead of the default
1368 // "select" to support sockets larger than FD_SETSIZE.
1369 if (!process_io) {
1370 return WaitPoll(cmsWait, signal_wakeup_);
1371 } else if (epoll_fd_ != INVALID_SOCKET) {
1372 return WaitEpoll(cmsWait);
1373 }
1374 #endif
1375 return WaitSelect(cmsWait, process_io);
1376 }
1377
1378 static void ProcessEvents(Dispatcher* dispatcher,
1379 bool readable,
1380 bool writable,
1381 bool check_error) {
1382 int errcode = 0;
1383 // TODO(pthatcher): Should we set errcode if getsockopt fails?
1384 if (check_error) {
1385 socklen_t len = sizeof(errcode);
1386 ::getsockopt(dispatcher->GetDescriptor(), SOL_SOCKET, SO_ERROR, &errcode,
1387 &len);
1388 }
1389
1390 uint32_t ff = 0;
1391
1392 // Check readable descriptors. If we're waiting on an accept, signal
1393 // that. Otherwise we're waiting for data, check to see if we're
1394 // readable or really closed.
1395 // TODO(pthatcher): Only peek at TCP descriptors.
1396 if (readable) {
1397 if (dispatcher->GetRequestedEvents() & DE_ACCEPT) {
1398 ff |= DE_ACCEPT;
1399 } else if (errcode || dispatcher->IsDescriptorClosed()) {
1400 ff |= DE_CLOSE;
1401 } else {
1402 ff |= DE_READ;
1403 }
1404 }
1405
1406 // Check writable descriptors. If we're waiting on a connect, detect
1407 // success versus failure by the reaped error code.
1408 if (writable) {
1409 if (dispatcher->GetRequestedEvents() & DE_CONNECT) {
1410 if (!errcode) {
1411 ff |= DE_CONNECT;
1412 } else {
1413 ff |= DE_CLOSE;
1414 }
1415 } else {
1416 ff |= DE_WRITE;
1417 }
1418 }
1419
1420 // Tell the descriptor about the event.
1421 if (ff != 0) {
1422 dispatcher->OnPreEvent(ff);
1423 dispatcher->OnEvent(ff, errcode);
1424 }
1425 }
1426
1427 bool PhysicalSocketServer::WaitSelect(int cmsWait, bool process_io) {
1428 // Calculate timing information
1429
1430 struct timeval* ptvWait = nullptr;
1431 struct timeval tvWait;
1432 struct timeval tvStop;
1433 if (cmsWait != kForever) {
1434 // Calculate wait timeval
1435 tvWait.tv_sec = cmsWait / 1000;
1436 tvWait.tv_usec = (cmsWait % 1000) * 1000;
1437 ptvWait = &tvWait;
1438
1439 // Calculate when to return in a timeval
1440 gettimeofday(&tvStop, nullptr);
1441 tvStop.tv_sec += tvWait.tv_sec;
1442 tvStop.tv_usec += tvWait.tv_usec;
1443 if (tvStop.tv_usec >= 1000000) {
1444 tvStop.tv_usec -= 1000000;
1445 tvStop.tv_sec += 1;
1446 }
1447 }
1448
1449 // Zero all fd_sets. Don't need to do this inside the loop since
1450 // select() zeros the descriptors not signaled
1451
1452 fd_set fdsRead;
1453 FD_ZERO(&fdsRead);
1454 fd_set fdsWrite;
1455 FD_ZERO(&fdsWrite);
1456 // Explicitly unpoison these FDs on MemorySanitizer which doesn't handle the
1457 // inline assembly in FD_ZERO.
1458 // http://crbug.com/344505
1459 #ifdef MEMORY_SANITIZER
1460 __msan_unpoison(&fdsRead, sizeof(fdsRead));
1461 __msan_unpoison(&fdsWrite, sizeof(fdsWrite));
1462 #endif
1463
1464 fWait_ = true;
1465
1466 while (fWait_) {
1467 int fdmax = -1;
1468 {
1469 CritScope cr(&crit_);
1470 // TODO(jbauch): Support re-entrant waiting.
1471 RTC_DCHECK(!processing_dispatchers_);
1472 for (Dispatcher* pdispatcher : dispatchers_) {
1473 // Query dispatchers for read and write wait state
1474 RTC_DCHECK(pdispatcher);
1475 if (!process_io && (pdispatcher != signal_wakeup_))
1476 continue;
1477 int fd = pdispatcher->GetDescriptor();
1478 // "select"ing a file descriptor that is equal to or larger than
1479 // FD_SETSIZE will result in undefined behavior.
1480 RTC_DCHECK_LT(fd, FD_SETSIZE);
1481 if (fd > fdmax)
1482 fdmax = fd;
1483
1484 uint32_t ff = pdispatcher->GetRequestedEvents();
1485 if (ff & (DE_READ | DE_ACCEPT))
1486 FD_SET(fd, &fdsRead);
1487 if (ff & (DE_WRITE | DE_CONNECT))
1488 FD_SET(fd, &fdsWrite);
1489 }
1490 }
1491
1492 // Wait then call handlers as appropriate
1493 // < 0 means error
1494 // 0 means timeout
1495 // > 0 means count of descriptors ready
1496 int n = select(fdmax + 1, &fdsRead, &fdsWrite, nullptr, ptvWait);
1497
1498 // If error, return error.
1499 if (n < 0) {
1500 if (errno != EINTR) {
1501 LOG_E(LS_ERROR, EN, errno) << "select";
1502 return false;
1503 }
1504 // Else ignore the error and keep going. If this EINTR was for one of the
1505 // signals managed by this PhysicalSocketServer, the
1506 // PosixSignalDeliveryDispatcher will be in the signaled state in the next
1507 // iteration.
1508 } else if (n == 0) {
1509 // If timeout, return success
1510 return true;
1511 } else {
1512 // We have signaled descriptors
1513 CritScope cr(&crit_);
1514 processing_dispatchers_ = true;
1515 for (Dispatcher* pdispatcher : dispatchers_) {
1516 int fd = pdispatcher->GetDescriptor();
1517
1518 bool readable = FD_ISSET(fd, &fdsRead);
1519 if (readable) {
1520 FD_CLR(fd, &fdsRead);
1521 }
1522
1523 bool writable = FD_ISSET(fd, &fdsWrite);
1524 if (writable) {
1525 FD_CLR(fd, &fdsWrite);
1526 }
1527
1528 // The error code can be signaled through reads or writes.
1529 ProcessEvents(pdispatcher, readable, writable, readable || writable);
1530 }
1531
1532 processing_dispatchers_ = false;
1533 // Process deferred dispatchers that have been added/removed while the
1534 // events were handled above.
1535 AddRemovePendingDispatchers();
1536 }
1537
1538 // Recalc the time remaining to wait. Doing it here means it doesn't get
1539 // calced twice the first time through the loop
1540 if (ptvWait) {
1541 ptvWait->tv_sec = 0;
1542 ptvWait->tv_usec = 0;
1543 struct timeval tvT;
1544 gettimeofday(&tvT, nullptr);
1545 if ((tvStop.tv_sec > tvT.tv_sec)
1546 || ((tvStop.tv_sec == tvT.tv_sec)
1547 && (tvStop.tv_usec > tvT.tv_usec))) {
1548 ptvWait->tv_sec = tvStop.tv_sec - tvT.tv_sec;
1549 ptvWait->tv_usec = tvStop.tv_usec - tvT.tv_usec;
1550 if (ptvWait->tv_usec < 0) {
1551 RTC_DCHECK(ptvWait->tv_sec > 0);
1552 ptvWait->tv_usec += 1000000;
1553 ptvWait->tv_sec -= 1;
1554 }
1555 }
1556 }
1557 }
1558
1559 return true;
1560 }
1561
1562 #if defined(WEBRTC_USE_EPOLL)
1563
1564 // Initial number of events to process with one call to "epoll_wait".
1565 static const size_t kInitialEpollEvents = 128;
1566
1567 // Maximum number of events to process with one call to "epoll_wait".
1568 static const size_t kMaxEpollEvents = 8192;
1569
1570 void PhysicalSocketServer::AddEpoll(Dispatcher* pdispatcher) {
1571 RTC_DCHECK(epoll_fd_ != INVALID_SOCKET);
1572 int fd = pdispatcher->GetDescriptor();
1573 RTC_DCHECK(fd != INVALID_SOCKET);
1574 if (fd == INVALID_SOCKET) {
1575 return;
1576 }
1577
1578 struct epoll_event event = {0};
1579 event.events = GetEpollEvents(pdispatcher->GetRequestedEvents());
1580 event.data.ptr = pdispatcher;
1581 int err = epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, fd, &event);
1582 RTC_DCHECK_EQ(err, 0);
1583 if (err == -1) {
1584 LOG_E(LS_ERROR, EN, errno) << "epoll_ctl EPOLL_CTL_ADD";
1585 }
1586 }
1587
1588 void PhysicalSocketServer::RemoveEpoll(Dispatcher* pdispatcher) {
1589 RTC_DCHECK(epoll_fd_ != INVALID_SOCKET);
1590 int fd = pdispatcher->GetDescriptor();
1591 RTC_DCHECK(fd != INVALID_SOCKET);
1592 if (fd == INVALID_SOCKET) {
1593 return;
1594 }
1595
1596 struct epoll_event event = {0};
1597 int err = epoll_ctl(epoll_fd_, EPOLL_CTL_DEL, fd, &event);
1598 RTC_DCHECK(err == 0 || errno == ENOENT);
1599 if (err == -1) {
1600 if (errno == ENOENT) {
1601 // Socket has already been closed.
1602 LOG_E(LS_VERBOSE, EN, errno) << "epoll_ctl EPOLL_CTL_DEL";
1603 } else {
1604 LOG_E(LS_ERROR, EN, errno) << "epoll_ctl EPOLL_CTL_DEL";
1605 }
1606 }
1607 }
1608
1609 void PhysicalSocketServer::UpdateEpoll(Dispatcher* pdispatcher) {
1610 RTC_DCHECK(epoll_fd_ != INVALID_SOCKET);
1611 int fd = pdispatcher->GetDescriptor();
1612 RTC_DCHECK(fd != INVALID_SOCKET);
1613 if (fd == INVALID_SOCKET) {
1614 return;
1615 }
1616
1617 struct epoll_event event = {0};
1618 event.events = GetEpollEvents(pdispatcher->GetRequestedEvents());
1619 event.data.ptr = pdispatcher;
1620 int err = epoll_ctl(epoll_fd_, EPOLL_CTL_MOD, fd, &event);
1621 RTC_DCHECK_EQ(err, 0);
1622 if (err == -1) {
1623 LOG_E(LS_ERROR, EN, errno) << "epoll_ctl EPOLL_CTL_MOD";
1624 }
1625 }
1626
1627 bool PhysicalSocketServer::WaitEpoll(int cmsWait) {
1628 RTC_DCHECK(epoll_fd_ != INVALID_SOCKET);
1629 int64_t tvWait = -1;
1630 int64_t tvStop = -1;
1631 if (cmsWait != kForever) {
1632 tvWait = cmsWait;
1633 tvStop = TimeAfter(cmsWait);
1634 }
1635
1636 if (epoll_events_.empty()) {
1637 // The initial space to receive events is created only if epoll is used.
1638 epoll_events_.resize(kInitialEpollEvents);
1639 }
1640
1641 fWait_ = true;
1642
1643 while (fWait_) {
1644 // Wait then call handlers as appropriate
1645 // < 0 means error
1646 // 0 means timeout
1647 // > 0 means count of descriptors ready
1648 int n = epoll_wait(epoll_fd_, &epoll_events_[0],
1649 static_cast<int>(epoll_events_.size()),
1650 static_cast<int>(tvWait));
1651 if (n < 0) {
1652 if (errno != EINTR) {
1653 LOG_E(LS_ERROR, EN, errno) << "epoll";
1654 return false;
1655 }
1656 // Else ignore the error and keep going. If this EINTR was for one of the
1657 // signals managed by this PhysicalSocketServer, the
1658 // PosixSignalDeliveryDispatcher will be in the signaled state in the next
1659 // iteration.
1660 } else if (n == 0) {
1661 // If timeout, return success
1662 return true;
1663 } else {
1664 // We have signaled descriptors
1665 CritScope cr(&crit_);
1666 for (int i = 0; i < n; ++i) {
1667 const epoll_event& event = epoll_events_[i];
1668 Dispatcher* pdispatcher = static_cast<Dispatcher*>(event.data.ptr);
1669 if (dispatchers_.find(pdispatcher) == dispatchers_.end()) {
1670 // The dispatcher for this socket no longer exists.
1671 continue;
1672 }
1673
1674 bool readable = (event.events & (EPOLLIN | EPOLLPRI));
1675 bool writable = (event.events & EPOLLOUT);
1676 bool check_error = (event.events & (EPOLLRDHUP | EPOLLERR | EPOLLHUP));
1677
1678 ProcessEvents(pdispatcher, readable, writable, check_error);
1679 }
1680 }
1681
1682 if (static_cast<size_t>(n) == epoll_events_.size() &&
1683 epoll_events_.size() < kMaxEpollEvents) {
1684 // We used the complete space to receive events, increase size for future
1685 // iterations.
1686 epoll_events_.resize(std::max(epoll_events_.size() * 2, kMaxEpollEvents));
1687 }
1688
1689 if (cmsWait != kForever) {
1690 tvWait = TimeDiff(tvStop, TimeMillis());
1691 if (tvWait < 0) {
1692 // Return success on timeout.
1693 return true;
1694 }
1695 }
1696 }
1697
1698 return true;
1699 }
1700
1701 bool PhysicalSocketServer::WaitPoll(int cmsWait, Dispatcher* dispatcher) {
1702 RTC_DCHECK(dispatcher);
1703 int64_t tvWait = -1;
1704 int64_t tvStop = -1;
1705 if (cmsWait != kForever) {
1706 tvWait = cmsWait;
1707 tvStop = TimeAfter(cmsWait);
1708 }
1709
1710 fWait_ = true;
1711
1712 struct pollfd fds = {0};
1713 int fd = dispatcher->GetDescriptor();
1714 fds.fd = fd;
1715
1716 while (fWait_) {
1717 uint32_t ff = dispatcher->GetRequestedEvents();
1718 fds.events = 0;
1719 if (ff & (DE_READ | DE_ACCEPT)) {
1720 fds.events |= POLLIN;
1721 }
1722 if (ff & (DE_WRITE | DE_CONNECT)) {
1723 fds.events |= POLLOUT;
1724 }
1725 fds.revents = 0;
1726
1727 // Wait then call handlers as appropriate
1728 // < 0 means error
1729 // 0 means timeout
1730 // > 0 means count of descriptors ready
1731 int n = poll(&fds, 1, static_cast<int>(tvWait));
1732 if (n < 0) {
1733 if (errno != EINTR) {
1734 LOG_E(LS_ERROR, EN, errno) << "poll";
1735 return false;
1736 }
1737 // Else ignore the error and keep going. If this EINTR was for one of the
1738 // signals managed by this PhysicalSocketServer, the
1739 // PosixSignalDeliveryDispatcher will be in the signaled state in the next
1740 // iteration.
1741 } else if (n == 0) {
1742 // If timeout, return success
1743 return true;
1744 } else {
1745 // We have signaled descriptors (should only be the passed dispatcher).
1746 RTC_DCHECK_EQ(n, 1);
1747 RTC_DCHECK_EQ(fds.fd, fd);
1748
1749 bool readable = (fds.revents & (POLLIN | POLLPRI));
1750 bool writable = (fds.revents & POLLOUT);
1751 bool check_error = (fds.revents & (POLLRDHUP | POLLERR | POLLHUP));
1752
1753 ProcessEvents(dispatcher, readable, writable, check_error);
1754 }
1755
1756 if (cmsWait != kForever) {
1757 tvWait = TimeDiff(tvStop, TimeMillis());
1758 if (tvWait < 0) {
1759 // Return success on timeout.
1760 return true;
1761 }
1762 }
1763 }
1764
1765 return true;
1766 }
1767
1768 #endif // WEBRTC_USE_EPOLL
1769
1770 static void GlobalSignalHandler(int signum) {
1771 PosixSignalHandler::Instance()->OnPosixSignalReceived(signum);
1772 }
1773
1774 bool PhysicalSocketServer::SetPosixSignalHandler(int signum,
1775 void (*handler)(int)) {
1776 // If handler is SIG_IGN or SIG_DFL then clear our user-level handler,
1777 // otherwise set one.
1778 if (handler == SIG_IGN || handler == SIG_DFL) {
1779 if (!InstallSignal(signum, handler)) {
1780 return false;
1781 }
1782 if (signal_dispatcher_) {
1783 signal_dispatcher_->ClearHandler(signum);
1784 if (!signal_dispatcher_->HasHandlers()) {
1785 signal_dispatcher_.reset();
1786 }
1787 }
1788 } else {
1789 if (!signal_dispatcher_) {
1790 signal_dispatcher_.reset(new PosixSignalDispatcher(this));
1791 }
1792 signal_dispatcher_->SetHandler(signum, handler);
1793 if (!InstallSignal(signum, &GlobalSignalHandler)) {
1794 return false;
1795 }
1796 }
1797 return true;
1798 }
1799
1800 Dispatcher* PhysicalSocketServer::signal_dispatcher() {
1801 return signal_dispatcher_.get();
1802 }
1803
1804 bool PhysicalSocketServer::InstallSignal(int signum, void (*handler)(int)) {
1805 struct sigaction act;
1806 // It doesn't really matter what we set this mask to.
1807 if (sigemptyset(&act.sa_mask) != 0) {
1808 LOG_ERR(LS_ERROR) << "Couldn't set mask";
1809 return false;
1810 }
1811 act.sa_handler = handler;
1812 #if !defined(__native_client__)
1813 // Use SA_RESTART so that our syscalls don't get EINTR, since we don't need it
1814 // and it's a nuisance. Though some syscalls still return EINTR and there's no
1815 // real standard for which ones. :(
1816 act.sa_flags = SA_RESTART;
1817 #else
1818 act.sa_flags = 0;
1819 #endif
1820 if (sigaction(signum, &act, nullptr) != 0) {
1821 LOG_ERR(LS_ERROR) << "Couldn't set sigaction";
1822 return false;
1823 }
1824 return true;
1825 }
1826 #endif // WEBRTC_POSIX
1827
1828 #if defined(WEBRTC_WIN)
1829 bool PhysicalSocketServer::Wait(int cmsWait, bool process_io) {
1830 int64_t cmsTotal = cmsWait;
1831 int64_t cmsElapsed = 0;
1832 int64_t msStart = Time();
1833
1834 fWait_ = true;
1835 while (fWait_) {
1836 std::vector<WSAEVENT> events;
1837 std::vector<Dispatcher *> event_owners;
1838
1839 events.push_back(socket_ev_);
1840
1841 {
1842 CritScope cr(&crit_);
1843 // TODO(jbauch): Support re-entrant waiting.
1844 RTC_DCHECK(!processing_dispatchers_);
1845
1846 // Calling "CheckSignalClose" might remove a closed dispatcher from the
1847 // set. This must be deferred to prevent invalidating the iterator.
1848 processing_dispatchers_ = true;
1849 for (Dispatcher* disp : dispatchers_) {
1850 if (!process_io && (disp != signal_wakeup_))
1851 continue;
1852 SOCKET s = disp->GetSocket();
1853 if (disp->CheckSignalClose()) {
1854 // We just signalled close, don't poll this socket
1855 } else if (s != INVALID_SOCKET) {
1856 WSAEventSelect(s,
1857 events[0],
1858 FlagsToEvents(disp->GetRequestedEvents()));
1859 } else {
1860 events.push_back(disp->GetWSAEvent());
1861 event_owners.push_back(disp);
1862 }
1863 }
1864
1865 processing_dispatchers_ = false;
1866 // Process deferred dispatchers that have been added/removed while the
1867 // events were handled above.
1868 AddRemovePendingDispatchers();
1869 }
1870
1871 // Which is shorter, the delay wait or the asked wait?
1872
1873 int64_t cmsNext;
1874 if (cmsWait == kForever) {
1875 cmsNext = cmsWait;
1876 } else {
1877 cmsNext = std::max<int64_t>(0, cmsTotal - cmsElapsed);
1878 }
1879
1880 // Wait for one of the events to signal
1881 DWORD dw = WSAWaitForMultipleEvents(static_cast<DWORD>(events.size()),
1882 &events[0],
1883 false,
1884 static_cast<DWORD>(cmsNext),
1885 false);
1886
1887 if (dw == WSA_WAIT_FAILED) {
1888 // Failed?
1889 // TODO(pthatcher): need a better strategy than this!
1890 WSAGetLastError();
1891 RTC_NOTREACHED();
1892 return false;
1893 } else if (dw == WSA_WAIT_TIMEOUT) {
1894 // Timeout?
1895 return true;
1896 } else {
1897 // Figure out which one it is and call it
1898 CritScope cr(&crit_);
1899 int index = dw - WSA_WAIT_EVENT_0;
1900 if (index > 0) {
1901 --index; // The first event is the socket event
1902 Dispatcher* disp = event_owners[index];
1903 // The dispatcher could have been removed while waiting for events.
1904 if (dispatchers_.find(disp) != dispatchers_.end()) {
1905 disp->OnPreEvent(0);
1906 disp->OnEvent(0, 0);
1907 }
1908 } else if (process_io) {
1909 processing_dispatchers_ = true;
1910 for (Dispatcher* disp : dispatchers_) {
1911 SOCKET s = disp->GetSocket();
1912 if (s == INVALID_SOCKET)
1913 continue;
1914
1915 WSANETWORKEVENTS wsaEvents;
1916 int err = WSAEnumNetworkEvents(s, events[0], &wsaEvents);
1917 if (err == 0) {
1918 {
1919 if ((wsaEvents.lNetworkEvents & FD_READ) &&
1920 wsaEvents.iErrorCode[FD_READ_BIT] != 0) {
1921 LOG(WARNING) << "PhysicalSocketServer got FD_READ_BIT error "
1922 << wsaEvents.iErrorCode[FD_READ_BIT];
1923 }
1924 if ((wsaEvents.lNetworkEvents & FD_WRITE) &&
1925 wsaEvents.iErrorCode[FD_WRITE_BIT] != 0) {
1926 LOG(WARNING) << "PhysicalSocketServer got FD_WRITE_BIT error "
1927 << wsaEvents.iErrorCode[FD_WRITE_BIT];
1928 }
1929 if ((wsaEvents.lNetworkEvents & FD_CONNECT) &&
1930 wsaEvents.iErrorCode[FD_CONNECT_BIT] != 0) {
1931 LOG(WARNING) << "PhysicalSocketServer got FD_CONNECT_BIT error "
1932 << wsaEvents.iErrorCode[FD_CONNECT_BIT];
1933 }
1934 if ((wsaEvents.lNetworkEvents & FD_ACCEPT) &&
1935 wsaEvents.iErrorCode[FD_ACCEPT_BIT] != 0) {
1936 LOG(WARNING) << "PhysicalSocketServer got FD_ACCEPT_BIT error "
1937 << wsaEvents.iErrorCode[FD_ACCEPT_BIT];
1938 }
1939 if ((wsaEvents.lNetworkEvents & FD_CLOSE) &&
1940 wsaEvents.iErrorCode[FD_CLOSE_BIT] != 0) {
1941 LOG(WARNING) << "PhysicalSocketServer got FD_CLOSE_BIT error "
1942 << wsaEvents.iErrorCode[FD_CLOSE_BIT];
1943 }
1944 }
1945 uint32_t ff = 0;
1946 int errcode = 0;
1947 if (wsaEvents.lNetworkEvents & FD_READ)
1948 ff |= DE_READ;
1949 if (wsaEvents.lNetworkEvents & FD_WRITE)
1950 ff |= DE_WRITE;
1951 if (wsaEvents.lNetworkEvents & FD_CONNECT) {
1952 if (wsaEvents.iErrorCode[FD_CONNECT_BIT] == 0) {
1953 ff |= DE_CONNECT;
1954 } else {
1955 ff |= DE_CLOSE;
1956 errcode = wsaEvents.iErrorCode[FD_CONNECT_BIT];
1957 }
1958 }
1959 if (wsaEvents.lNetworkEvents & FD_ACCEPT)
1960 ff |= DE_ACCEPT;
1961 if (wsaEvents.lNetworkEvents & FD_CLOSE) {
1962 ff |= DE_CLOSE;
1963 errcode = wsaEvents.iErrorCode[FD_CLOSE_BIT];
1964 }
1965 if (ff != 0) {
1966 disp->OnPreEvent(ff);
1967 disp->OnEvent(ff, errcode);
1968 }
1969 }
1970 }
1971
1972 processing_dispatchers_ = false;
1973 // Process deferred dispatchers that have been added/removed while the
1974 // events were handled above.
1975 AddRemovePendingDispatchers();
1976 }
1977
1978 // Reset the network event until new activity occurs
1979 WSAResetEvent(socket_ev_);
1980 }
1981
1982 // Break?
1983 if (!fWait_)
1984 break;
1985 cmsElapsed = TimeSince(msStart);
1986 if ((cmsWait != kForever) && (cmsElapsed >= cmsWait)) {
1987 break;
1988 }
1989 }
1990
1991 // Done
1992 return true;
1993 }
1994 #endif // WEBRTC_WIN
1995
1996 } // namespace rtc
OLDNEW
« no previous file with comments | « webrtc/base/physicalsocketserver.h ('k') | webrtc/base/physicalsocketserver_unittest.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698