| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 * Copyright 2011 The WebRTC Project Authors. All rights reserved. | |
| 3 * | |
| 4 * Use of this source code is governed by a BSD-style license | |
| 5 * that can be found in the LICENSE file in the root of the source | |
| 6 * tree. An additional intellectual property rights grant can be found | |
| 7 * in the file PATENTS. All contributing project authors may | |
| 8 * be found in the AUTHORS file in the root of the source tree. | |
| 9 */ | |
| 10 | |
| 11 #include "webrtc/base/messagedigest.h" | |
| 12 | |
| 13 #include <memory> | |
| 14 | |
| 15 #include <string.h> | |
| 16 | |
| 17 #include "webrtc/base/basictypes.h" | |
| 18 #include "webrtc/base/openssldigest.h" | |
| 19 #include "webrtc/base/stringencode.h" | |
| 20 | |
| 21 namespace rtc { | |
| 22 | |
| 23 // From RFC 4572. | |
| 24 const char DIGEST_MD5[] = "md5"; | |
| 25 const char DIGEST_SHA_1[] = "sha-1"; | |
| 26 const char DIGEST_SHA_224[] = "sha-224"; | |
| 27 const char DIGEST_SHA_256[] = "sha-256"; | |
| 28 const char DIGEST_SHA_384[] = "sha-384"; | |
| 29 const char DIGEST_SHA_512[] = "sha-512"; | |
| 30 | |
| 31 static const size_t kBlockSize = 64; // valid for SHA-256 and down | |
| 32 | |
| 33 MessageDigest* MessageDigestFactory::Create(const std::string& alg) { | |
| 34 MessageDigest* digest = new OpenSSLDigest(alg); | |
| 35 if (digest->Size() == 0) { // invalid algorithm | |
| 36 delete digest; | |
| 37 digest = nullptr; | |
| 38 } | |
| 39 return digest; | |
| 40 } | |
| 41 | |
| 42 bool IsFips180DigestAlgorithm(const std::string& alg) { | |
| 43 // These are the FIPS 180 algorithms. According to RFC 4572 Section 5, | |
| 44 // "Self-signed certificates (for which legacy certificates are not a | |
| 45 // consideration) MUST use one of the FIPS 180 algorithms (SHA-1, | |
| 46 // SHA-224, SHA-256, SHA-384, or SHA-512) as their signature algorithm, | |
| 47 // and thus also MUST use it to calculate certificate fingerprints." | |
| 48 return alg == DIGEST_SHA_1 || | |
| 49 alg == DIGEST_SHA_224 || | |
| 50 alg == DIGEST_SHA_256 || | |
| 51 alg == DIGEST_SHA_384 || | |
| 52 alg == DIGEST_SHA_512; | |
| 53 } | |
| 54 | |
| 55 size_t ComputeDigest(MessageDigest* digest, const void* input, size_t in_len, | |
| 56 void* output, size_t out_len) { | |
| 57 digest->Update(input, in_len); | |
| 58 return digest->Finish(output, out_len); | |
| 59 } | |
| 60 | |
| 61 size_t ComputeDigest(const std::string& alg, const void* input, size_t in_len, | |
| 62 void* output, size_t out_len) { | |
| 63 std::unique_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg)); | |
| 64 return (digest) ? | |
| 65 ComputeDigest(digest.get(), input, in_len, output, out_len) : | |
| 66 0; | |
| 67 } | |
| 68 | |
| 69 std::string ComputeDigest(MessageDigest* digest, const std::string& input) { | |
| 70 std::unique_ptr<char[]> output(new char[digest->Size()]); | |
| 71 ComputeDigest(digest, input.data(), input.size(), | |
| 72 output.get(), digest->Size()); | |
| 73 return hex_encode(output.get(), digest->Size()); | |
| 74 } | |
| 75 | |
| 76 bool ComputeDigest(const std::string& alg, const std::string& input, | |
| 77 std::string* output) { | |
| 78 std::unique_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg)); | |
| 79 if (!digest) { | |
| 80 return false; | |
| 81 } | |
| 82 *output = ComputeDigest(digest.get(), input); | |
| 83 return true; | |
| 84 } | |
| 85 | |
| 86 std::string ComputeDigest(const std::string& alg, const std::string& input) { | |
| 87 std::string output; | |
| 88 ComputeDigest(alg, input, &output); | |
| 89 return output; | |
| 90 } | |
| 91 | |
| 92 // Compute a RFC 2104 HMAC: H(K XOR opad, H(K XOR ipad, text)) | |
| 93 size_t ComputeHmac(MessageDigest* digest, | |
| 94 const void* key, size_t key_len, | |
| 95 const void* input, size_t in_len, | |
| 96 void* output, size_t out_len) { | |
| 97 // We only handle algorithms with a 64-byte blocksize. | |
| 98 // TODO: Add BlockSize() method to MessageDigest. | |
| 99 size_t block_len = kBlockSize; | |
| 100 if (digest->Size() > 32) { | |
| 101 return 0; | |
| 102 } | |
| 103 // Copy the key to a block-sized buffer to simplify padding. | |
| 104 // If the key is longer than a block, hash it and use the result instead. | |
| 105 std::unique_ptr<uint8_t[]> new_key(new uint8_t[block_len]); | |
| 106 if (key_len > block_len) { | |
| 107 ComputeDigest(digest, key, key_len, new_key.get(), block_len); | |
| 108 memset(new_key.get() + digest->Size(), 0, block_len - digest->Size()); | |
| 109 } else { | |
| 110 memcpy(new_key.get(), key, key_len); | |
| 111 memset(new_key.get() + key_len, 0, block_len - key_len); | |
| 112 } | |
| 113 // Set up the padding from the key, salting appropriately for each padding. | |
| 114 std::unique_ptr<uint8_t[]> o_pad(new uint8_t[block_len]); | |
| 115 std::unique_ptr<uint8_t[]> i_pad(new uint8_t[block_len]); | |
| 116 for (size_t i = 0; i < block_len; ++i) { | |
| 117 o_pad[i] = 0x5c ^ new_key[i]; | |
| 118 i_pad[i] = 0x36 ^ new_key[i]; | |
| 119 } | |
| 120 // Inner hash; hash the inner padding, and then the input buffer. | |
| 121 std::unique_ptr<uint8_t[]> inner(new uint8_t[digest->Size()]); | |
| 122 digest->Update(i_pad.get(), block_len); | |
| 123 digest->Update(input, in_len); | |
| 124 digest->Finish(inner.get(), digest->Size()); | |
| 125 // Outer hash; hash the outer padding, and then the result of the inner hash. | |
| 126 digest->Update(o_pad.get(), block_len); | |
| 127 digest->Update(inner.get(), digest->Size()); | |
| 128 return digest->Finish(output, out_len); | |
| 129 } | |
| 130 | |
| 131 size_t ComputeHmac(const std::string& alg, const void* key, size_t key_len, | |
| 132 const void* input, size_t in_len, | |
| 133 void* output, size_t out_len) { | |
| 134 std::unique_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg)); | |
| 135 if (!digest) { | |
| 136 return 0; | |
| 137 } | |
| 138 return ComputeHmac(digest.get(), key, key_len, | |
| 139 input, in_len, output, out_len); | |
| 140 } | |
| 141 | |
| 142 std::string ComputeHmac(MessageDigest* digest, const std::string& key, | |
| 143 const std::string& input) { | |
| 144 std::unique_ptr<char[]> output(new char[digest->Size()]); | |
| 145 ComputeHmac(digest, key.data(), key.size(), | |
| 146 input.data(), input.size(), output.get(), digest->Size()); | |
| 147 return hex_encode(output.get(), digest->Size()); | |
| 148 } | |
| 149 | |
| 150 bool ComputeHmac(const std::string& alg, const std::string& key, | |
| 151 const std::string& input, std::string* output) { | |
| 152 std::unique_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg)); | |
| 153 if (!digest) { | |
| 154 return false; | |
| 155 } | |
| 156 *output = ComputeHmac(digest.get(), key, input); | |
| 157 return true; | |
| 158 } | |
| 159 | |
| 160 std::string ComputeHmac(const std::string& alg, const std::string& key, | |
| 161 const std::string& input) { | |
| 162 std::string output; | |
| 163 ComputeHmac(alg, key, input, &output); | |
| 164 return output; | |
| 165 } | |
| 166 | |
| 167 } // namespace rtc | |
| OLD | NEW |