Index: webrtc/modules/rtp_rtcp/source/vp8_partition_aggregator.cc |
diff --git a/webrtc/modules/rtp_rtcp/source/vp8_partition_aggregator.cc b/webrtc/modules/rtp_rtcp/source/vp8_partition_aggregator.cc |
deleted file mode 100644 |
index 9721a7e9ac5b5b0058d3a7159aed678e8af4958a..0000000000000000000000000000000000000000 |
--- a/webrtc/modules/rtp_rtcp/source/vp8_partition_aggregator.cc |
+++ /dev/null |
@@ -1,268 +0,0 @@ |
-/* |
- * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
- * |
- * Use of this source code is governed by a BSD-style license |
- * that can be found in the LICENSE file in the root of the source |
- * tree. An additional intellectual property rights grant can be found |
- * in the file PATENTS. All contributing project authors may |
- * be found in the AUTHORS file in the root of the source tree. |
- */ |
- |
-#include "webrtc/modules/rtp_rtcp/source/vp8_partition_aggregator.h" |
- |
-#include <assert.h> |
-#include <stdlib.h> // NULL |
- |
-#include <algorithm> |
-#include <limits> |
- |
-namespace webrtc { |
- |
-PartitionTreeNode::PartitionTreeNode(PartitionTreeNode* parent, |
- const size_t* size_vector, |
- size_t num_partitions, |
- size_t this_size) |
- : parent_(parent), |
- this_size_(this_size), |
- size_vector_(size_vector), |
- num_partitions_(num_partitions), |
- max_parent_size_(0), |
- min_parent_size_(std::numeric_limits<int>::max()), |
- packet_start_(false) { |
- // If |this_size_| > INT_MAX, Cost() and CreateChildren() won't work properly. |
- assert(this_size_ <= static_cast<size_t>(std::numeric_limits<int>::max())); |
- children_[kLeftChild] = NULL; |
- children_[kRightChild] = NULL; |
-} |
- |
-PartitionTreeNode* PartitionTreeNode::CreateRootNode(const size_t* size_vector, |
- size_t num_partitions) { |
- PartitionTreeNode* root_node = new PartitionTreeNode( |
- NULL, &size_vector[1], num_partitions - 1, size_vector[0]); |
- root_node->set_packet_start(true); |
- return root_node; |
-} |
- |
-PartitionTreeNode::~PartitionTreeNode() { |
- delete children_[kLeftChild]; |
- delete children_[kRightChild]; |
-} |
- |
-int PartitionTreeNode::Cost(size_t penalty) { |
- int cost = 0; |
- if (num_partitions_ == 0) { |
- // This is a solution node. |
- cost = std::max(max_parent_size_, this_size_int()) - |
- std::min(min_parent_size_, this_size_int()); |
- } else { |
- cost = std::max(max_parent_size_, this_size_int()) - min_parent_size_; |
- } |
- return cost + NumPackets() * penalty; |
-} |
- |
-bool PartitionTreeNode::CreateChildren(size_t max_size) { |
- assert(max_size > 0); |
- bool children_created = false; |
- if (num_partitions_ > 0) { |
- if (this_size_ + size_vector_[0] <= max_size) { |
- assert(!children_[kLeftChild]); |
- children_[kLeftChild] = |
- new PartitionTreeNode(this, &size_vector_[1], num_partitions_ - 1, |
- this_size_ + size_vector_[0]); |
- children_[kLeftChild]->set_max_parent_size(max_parent_size_); |
- children_[kLeftChild]->set_min_parent_size(min_parent_size_); |
- // "Left" child is continuation of same packet. |
- children_[kLeftChild]->set_packet_start(false); |
- children_created = true; |
- } |
- if (this_size_ > 0) { |
- assert(!children_[kRightChild]); |
- children_[kRightChild] = new PartitionTreeNode( |
- this, &size_vector_[1], num_partitions_ - 1, size_vector_[0]); |
- children_[kRightChild]->set_max_parent_size( |
- std::max(max_parent_size_, this_size_int())); |
- children_[kRightChild]->set_min_parent_size( |
- std::min(min_parent_size_, this_size_int())); |
- // "Right" child starts a new packet. |
- children_[kRightChild]->set_packet_start(true); |
- children_created = true; |
- } |
- } |
- return children_created; |
-} |
- |
-size_t PartitionTreeNode::NumPackets() { |
- if (parent_ == NULL) { |
- // Root node is a "right" child by definition. |
- return 1; |
- } |
- if (parent_->children_[kLeftChild] == this) { |
- // This is a "left" child. |
- return parent_->NumPackets(); |
- } else { |
- // This is a "right" child. |
- return 1 + parent_->NumPackets(); |
- } |
-} |
- |
-PartitionTreeNode* PartitionTreeNode::GetOptimalNode(size_t max_size, |
- size_t penalty) { |
- CreateChildren(max_size); |
- PartitionTreeNode* left = children_[kLeftChild]; |
- PartitionTreeNode* right = children_[kRightChild]; |
- if ((left == NULL) && (right == NULL)) { |
- // This is a solution node; return it. |
- return this; |
- } else if (left == NULL) { |
- // One child empty, return the other. |
- return right->GetOptimalNode(max_size, penalty); |
- } else if (right == NULL) { |
- // One child empty, return the other. |
- return left->GetOptimalNode(max_size, penalty); |
- } else { |
- PartitionTreeNode* first; |
- PartitionTreeNode* second; |
- if (left->Cost(penalty) <= right->Cost(penalty)) { |
- first = left; |
- second = right; |
- } else { |
- first = right; |
- second = left; |
- } |
- first = first->GetOptimalNode(max_size, penalty); |
- if (second->Cost(penalty) <= first->Cost(penalty)) { |
- second = second->GetOptimalNode(max_size, penalty); |
- // Compare cost estimate for "second" with actual cost for "first". |
- if (second->Cost(penalty) < first->Cost(penalty)) { |
- return second; |
- } |
- } |
- return first; |
- } |
-} |
- |
-Vp8PartitionAggregator::Vp8PartitionAggregator( |
- const RTPFragmentationHeader& fragmentation, |
- size_t first_partition_idx, |
- size_t last_partition_idx) |
- : root_(NULL), |
- num_partitions_(last_partition_idx - first_partition_idx + 1), |
- size_vector_(new size_t[num_partitions_]), |
- largest_partition_size_(0) { |
- assert(last_partition_idx >= first_partition_idx); |
- assert(last_partition_idx < fragmentation.fragmentationVectorSize); |
- for (size_t i = 0; i < num_partitions_; ++i) { |
- size_vector_[i] = |
- fragmentation.fragmentationLength[i + first_partition_idx]; |
- largest_partition_size_ = |
- std::max(largest_partition_size_, size_vector_[i]); |
- } |
- root_ = PartitionTreeNode::CreateRootNode(size_vector_, num_partitions_); |
-} |
- |
-Vp8PartitionAggregator::~Vp8PartitionAggregator() { |
- delete[] size_vector_; |
- delete root_; |
-} |
- |
-void Vp8PartitionAggregator::SetPriorMinMax(int min_size, int max_size) { |
- assert(root_); |
- assert(min_size >= 0); |
- assert(max_size >= min_size); |
- root_->set_min_parent_size(min_size); |
- root_->set_max_parent_size(max_size); |
-} |
- |
-Vp8PartitionAggregator::ConfigVec |
-Vp8PartitionAggregator::FindOptimalConfiguration(size_t max_size, |
- size_t penalty) { |
- assert(root_); |
- assert(max_size >= largest_partition_size_); |
- PartitionTreeNode* opt = root_->GetOptimalNode(max_size, penalty); |
- ConfigVec config_vector(num_partitions_, 0); |
- PartitionTreeNode* temp_node = opt; |
- size_t packet_index = opt->NumPackets(); |
- for (size_t i = num_partitions_; i > 0; --i) { |
- assert(packet_index > 0); |
- assert(temp_node != NULL); |
- config_vector[i - 1] = packet_index - 1; |
- if (temp_node->packet_start()) |
- --packet_index; |
- temp_node = temp_node->parent(); |
- } |
- return config_vector; |
-} |
- |
-void Vp8PartitionAggregator::CalcMinMax(const ConfigVec& config, |
- int* min_size, |
- int* max_size) const { |
- if (*min_size < 0) { |
- *min_size = std::numeric_limits<int>::max(); |
- } |
- if (*max_size < 0) { |
- *max_size = 0; |
- } |
- size_t i = 0; |
- while (i < config.size()) { |
- size_t this_size = 0; |
- size_t j = i; |
- while (j < config.size() && config[i] == config[j]) { |
- this_size += size_vector_[j]; |
- ++j; |
- } |
- i = j; |
- if (this_size < static_cast<size_t>(*min_size)) { |
- *min_size = this_size; |
- } |
- if (this_size > static_cast<size_t>(*max_size)) { |
- *max_size = this_size; |
- } |
- } |
-} |
- |
-size_t Vp8PartitionAggregator::CalcNumberOfFragments( |
- size_t large_partition_size, |
- size_t max_payload_size, |
- size_t penalty, |
- int min_size, |
- int max_size) { |
- assert(large_partition_size > 0); |
- assert(max_payload_size > 0); |
- assert(min_size != 0); |
- assert(min_size <= max_size); |
- assert(max_size <= static_cast<int>(max_payload_size)); |
- // Divisions with rounding up. |
- const size_t min_number_of_fragments = |
- (large_partition_size + max_payload_size - 1) / max_payload_size; |
- if (min_size < 0 || max_size < 0) { |
- // No aggregates produced, so we do not have any size boundaries. |
- // Simply split in as few partitions as possible. |
- return min_number_of_fragments; |
- } |
- const size_t max_number_of_fragments = |
- (large_partition_size + min_size - 1) / min_size; |
- int num_fragments = -1; |
- size_t best_cost = std::numeric_limits<size_t>::max(); |
- for (size_t n = min_number_of_fragments; n <= max_number_of_fragments; ++n) { |
- // Round up so that we use the largest fragment. |
- size_t fragment_size = (large_partition_size + n - 1) / n; |
- size_t cost = 0; |
- if (fragment_size < static_cast<size_t>(min_size)) { |
- cost = min_size - fragment_size + n * penalty; |
- } else if (fragment_size > static_cast<size_t>(max_size)) { |
- cost = fragment_size - max_size + n * penalty; |
- } else { |
- cost = n * penalty; |
- } |
- if (fragment_size <= max_payload_size && cost < best_cost) { |
- num_fragments = n; |
- best_cost = cost; |
- } |
- } |
- assert(num_fragments > 0); |
- // TODO(mflodman) Assert disabled since it's falsely triggered, see issue 293. |
- // assert(large_partition_size / num_fragments + 1 <= max_payload_size); |
- return num_fragments; |
-} |
- |
-} // namespace webrtc |