Index: webrtc/modules/audio_processing/aec3/adaptive_fir_filter_unittest.cc |
diff --git a/webrtc/modules/audio_processing/aec3/adaptive_fir_filter_unittest.cc b/webrtc/modules/audio_processing/aec3/adaptive_fir_filter_unittest.cc |
index 6d1a5820fe7f0e6c752d9e84cc212d3406a87c2a..4560958bfd0ef350e46d97a5a3ddcb34484627d0 100644 |
--- a/webrtc/modules/audio_processing/aec3/adaptive_fir_filter_unittest.cc |
+++ b/webrtc/modules/audio_processing/aec3/adaptive_fir_filter_unittest.cc |
@@ -10,6 +10,7 @@ |
#include "webrtc/modules/audio_processing/aec3/adaptive_fir_filter.h" |
+#include <math.h> |
#include <algorithm> |
#include <numeric> |
#include <string> |
@@ -41,10 +42,114 @@ |
} // namespace |
+#if defined(WEBRTC_HAS_NEON) |
+// Verifies that the optimized methods for filter adaptation are similar to |
+// their reference counterparts. |
+TEST(AdaptiveFirFilter, FilterAdaptationNeonOptimizations) { |
+ RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 12, |
+ std::vector<size_t>(1, 12)); |
+ Random random_generator(42U); |
+ std::vector<std::vector<float>> x(3, std::vector<float>(kBlockSize, 0.f)); |
+ FftData S_C; |
+ FftData S_NEON; |
+ FftData G; |
+ Aec3Fft fft; |
+ std::vector<FftData> H_C(10); |
+ std::vector<FftData> H_NEON(10); |
+ for (auto& H_j : H_C) { |
+ H_j.Clear(); |
+ } |
+ for (auto& H_j : H_NEON) { |
+ H_j.Clear(); |
+ } |
+ |
+ for (size_t k = 0; k < 30; ++k) { |
+ RandomizeSampleVector(&random_generator, x[0]); |
+ render_buffer.Insert(x); |
+ } |
+ |
+ for (size_t j = 0; j < G.re.size(); ++j) { |
+ G.re[j] = j / 10001.f; |
+ } |
+ for (size_t j = 1; j < G.im.size() - 1; ++j) { |
+ G.im[j] = j / 20001.f; |
+ } |
+ G.im[0] = 0.f; |
+ G.im[G.im.size() - 1] = 0.f; |
+ |
+ AdaptPartitions_NEON(render_buffer, G, H_NEON); |
+ AdaptPartitions(render_buffer, G, H_C); |
+ AdaptPartitions_NEON(render_buffer, G, H_NEON); |
+ AdaptPartitions(render_buffer, G, H_C); |
+ |
+ for (size_t l = 0; l < H_C.size(); ++l) { |
+ for (size_t j = 0; j < H_C[l].im.size(); ++j) { |
+ EXPECT_NEAR(H_C[l].re[j], H_NEON[l].re[j], fabs(H_C[l].re[j] * 0.00001f)); |
+ EXPECT_NEAR(H_C[l].im[j], H_NEON[l].im[j], fabs(H_C[l].im[j] * 0.00001f)); |
+ } |
+ } |
+ |
+ ApplyFilter_NEON(render_buffer, H_NEON, &S_NEON); |
+ ApplyFilter(render_buffer, H_C, &S_C); |
+ for (size_t j = 0; j < S_C.re.size(); ++j) { |
+ EXPECT_NEAR(S_C.re[j], S_NEON.re[j], fabs(S_C.re[j] * 0.00001f)); |
+ EXPECT_NEAR(S_C.im[j], S_NEON.im[j], fabs(S_C.re[j] * 0.00001f)); |
+ } |
+} |
+ |
+// Verifies that the optimized method for frequency response computation is |
+// bitexact to the reference counterpart. |
+TEST(AdaptiveFirFilter, UpdateFrequencyResponseNeonOptimization) { |
+ const size_t kNumPartitions = 12; |
+ std::vector<FftData> H(kNumPartitions); |
+ std::vector<std::array<float, kFftLengthBy2Plus1>> H2(kNumPartitions); |
+ std::vector<std::array<float, kFftLengthBy2Plus1>> H2_NEON(kNumPartitions); |
+ |
+ for (size_t j = 0; j < H.size(); ++j) { |
+ for (size_t k = 0; k < H[j].re.size(); ++k) { |
+ H[j].re[k] = k + j / 3.f; |
+ H[j].im[k] = j + k / 7.f; |
+ } |
+ } |
+ |
+ UpdateFrequencyResponse(H, &H2); |
+ UpdateFrequencyResponse_NEON(H, &H2_NEON); |
+ |
+ for (size_t j = 0; j < H2.size(); ++j) { |
+ for (size_t k = 0; k < H[j].re.size(); ++k) { |
+ EXPECT_FLOAT_EQ(H2[j][k], H2_NEON[j][k]); |
+ } |
+ } |
+} |
+ |
+// Verifies that the optimized method for echo return loss computation is |
+// bitexact to the reference counterpart. |
+TEST(AdaptiveFirFilter, UpdateErlNeonOptimization) { |
+ const size_t kNumPartitions = 12; |
+ std::vector<std::array<float, kFftLengthBy2Plus1>> H2(kNumPartitions); |
+ std::array<float, kFftLengthBy2Plus1> erl; |
+ std::array<float, kFftLengthBy2Plus1> erl_NEON; |
+ |
+ for (size_t j = 0; j < H2.size(); ++j) { |
+ for (size_t k = 0; k < H2[j].size(); ++k) { |
+ H2[j][k] = k + j / 3.f; |
+ } |
+ } |
+ |
+ UpdateErlEstimator(H2, &erl); |
+ UpdateErlEstimator_NEON(H2, &erl_NEON); |
+ |
+ for (size_t j = 0; j < erl.size(); ++j) { |
+ EXPECT_FLOAT_EQ(erl[j], erl_NEON[j]); |
+ } |
+} |
+ |
+#endif |
+ |
#if defined(WEBRTC_ARCH_X86_FAMILY) |
// Verifies that the optimized methods for filter adaptation are bitexact to |
// their reference counterparts. |
-TEST(AdaptiveFirFilter, FilterAdaptationOptimizations) { |
+TEST(AdaptiveFirFilter, FilterAdaptationSse2Optimizations) { |
bool use_sse2 = (WebRtc_GetCPUInfo(kSSE2) != 0); |
if (use_sse2) { |
RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 12, |
@@ -95,7 +200,7 @@ |
// Verifies that the optimized method for frequency response computation is |
// bitexact to the reference counterpart. |
-TEST(AdaptiveFirFilter, UpdateFrequencyResponseOptimization) { |
+TEST(AdaptiveFirFilter, UpdateFrequencyResponseSse2Optimization) { |
bool use_sse2 = (WebRtc_GetCPUInfo(kSSE2) != 0); |
if (use_sse2) { |
const size_t kNumPartitions = 12; |
@@ -123,7 +228,7 @@ |
// Verifies that the optimized method for echo return loss computation is |
// bitexact to the reference counterpart. |
-TEST(AdaptiveFirFilter, UpdateErlOptimization) { |
+TEST(AdaptiveFirFilter, UpdateErlSse2Optimization) { |
bool use_sse2 = (WebRtc_GetCPUInfo(kSSE2) != 0); |
if (use_sse2) { |
const size_t kNumPartitions = 12; |