| Index: webrtc/modules/audio_processing/aec3/adaptive_fir_filter_unittest.cc
|
| diff --git a/webrtc/modules/audio_processing/aec3/adaptive_fir_filter_unittest.cc b/webrtc/modules/audio_processing/aec3/adaptive_fir_filter_unittest.cc
|
| index 6d1a5820fe7f0e6c752d9e84cc212d3406a87c2a..4560958bfd0ef350e46d97a5a3ddcb34484627d0 100644
|
| --- a/webrtc/modules/audio_processing/aec3/adaptive_fir_filter_unittest.cc
|
| +++ b/webrtc/modules/audio_processing/aec3/adaptive_fir_filter_unittest.cc
|
| @@ -10,6 +10,7 @@
|
|
|
| #include "webrtc/modules/audio_processing/aec3/adaptive_fir_filter.h"
|
|
|
| +#include <math.h>
|
| #include <algorithm>
|
| #include <numeric>
|
| #include <string>
|
| @@ -41,10 +42,114 @@ std::string ProduceDebugText(size_t delay) {
|
|
|
| } // namespace
|
|
|
| +#if defined(WEBRTC_HAS_NEON)
|
| +// Verifies that the optimized methods for filter adaptation are similar to
|
| +// their reference counterparts.
|
| +TEST(AdaptiveFirFilter, FilterAdaptationNeonOptimizations) {
|
| + RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 12,
|
| + std::vector<size_t>(1, 12));
|
| + Random random_generator(42U);
|
| + std::vector<std::vector<float>> x(3, std::vector<float>(kBlockSize, 0.f));
|
| + FftData S_C;
|
| + FftData S_NEON;
|
| + FftData G;
|
| + Aec3Fft fft;
|
| + std::vector<FftData> H_C(10);
|
| + std::vector<FftData> H_NEON(10);
|
| + for (auto& H_j : H_C) {
|
| + H_j.Clear();
|
| + }
|
| + for (auto& H_j : H_NEON) {
|
| + H_j.Clear();
|
| + }
|
| +
|
| + for (size_t k = 0; k < 30; ++k) {
|
| + RandomizeSampleVector(&random_generator, x[0]);
|
| + render_buffer.Insert(x);
|
| + }
|
| +
|
| + for (size_t j = 0; j < G.re.size(); ++j) {
|
| + G.re[j] = j / 10001.f;
|
| + }
|
| + for (size_t j = 1; j < G.im.size() - 1; ++j) {
|
| + G.im[j] = j / 20001.f;
|
| + }
|
| + G.im[0] = 0.f;
|
| + G.im[G.im.size() - 1] = 0.f;
|
| +
|
| + AdaptPartitions_NEON(render_buffer, G, H_NEON);
|
| + AdaptPartitions(render_buffer, G, H_C);
|
| + AdaptPartitions_NEON(render_buffer, G, H_NEON);
|
| + AdaptPartitions(render_buffer, G, H_C);
|
| +
|
| + for (size_t l = 0; l < H_C.size(); ++l) {
|
| + for (size_t j = 0; j < H_C[l].im.size(); ++j) {
|
| + EXPECT_NEAR(H_C[l].re[j], H_NEON[l].re[j], fabs(H_C[l].re[j] * 0.00001f));
|
| + EXPECT_NEAR(H_C[l].im[j], H_NEON[l].im[j], fabs(H_C[l].im[j] * 0.00001f));
|
| + }
|
| + }
|
| +
|
| + ApplyFilter_NEON(render_buffer, H_NEON, &S_NEON);
|
| + ApplyFilter(render_buffer, H_C, &S_C);
|
| + for (size_t j = 0; j < S_C.re.size(); ++j) {
|
| + EXPECT_NEAR(S_C.re[j], S_NEON.re[j], fabs(S_C.re[j] * 0.00001f));
|
| + EXPECT_NEAR(S_C.im[j], S_NEON.im[j], fabs(S_C.re[j] * 0.00001f));
|
| + }
|
| +}
|
| +
|
| +// Verifies that the optimized method for frequency response computation is
|
| +// bitexact to the reference counterpart.
|
| +TEST(AdaptiveFirFilter, UpdateFrequencyResponseNeonOptimization) {
|
| + const size_t kNumPartitions = 12;
|
| + std::vector<FftData> H(kNumPartitions);
|
| + std::vector<std::array<float, kFftLengthBy2Plus1>> H2(kNumPartitions);
|
| + std::vector<std::array<float, kFftLengthBy2Plus1>> H2_NEON(kNumPartitions);
|
| +
|
| + for (size_t j = 0; j < H.size(); ++j) {
|
| + for (size_t k = 0; k < H[j].re.size(); ++k) {
|
| + H[j].re[k] = k + j / 3.f;
|
| + H[j].im[k] = j + k / 7.f;
|
| + }
|
| + }
|
| +
|
| + UpdateFrequencyResponse(H, &H2);
|
| + UpdateFrequencyResponse_NEON(H, &H2_NEON);
|
| +
|
| + for (size_t j = 0; j < H2.size(); ++j) {
|
| + for (size_t k = 0; k < H[j].re.size(); ++k) {
|
| + EXPECT_FLOAT_EQ(H2[j][k], H2_NEON[j][k]);
|
| + }
|
| + }
|
| +}
|
| +
|
| +// Verifies that the optimized method for echo return loss computation is
|
| +// bitexact to the reference counterpart.
|
| +TEST(AdaptiveFirFilter, UpdateErlNeonOptimization) {
|
| + const size_t kNumPartitions = 12;
|
| + std::vector<std::array<float, kFftLengthBy2Plus1>> H2(kNumPartitions);
|
| + std::array<float, kFftLengthBy2Plus1> erl;
|
| + std::array<float, kFftLengthBy2Plus1> erl_NEON;
|
| +
|
| + for (size_t j = 0; j < H2.size(); ++j) {
|
| + for (size_t k = 0; k < H2[j].size(); ++k) {
|
| + H2[j][k] = k + j / 3.f;
|
| + }
|
| + }
|
| +
|
| + UpdateErlEstimator(H2, &erl);
|
| + UpdateErlEstimator_NEON(H2, &erl_NEON);
|
| +
|
| + for (size_t j = 0; j < erl.size(); ++j) {
|
| + EXPECT_FLOAT_EQ(erl[j], erl_NEON[j]);
|
| + }
|
| +}
|
| +
|
| +#endif
|
| +
|
| #if defined(WEBRTC_ARCH_X86_FAMILY)
|
| // Verifies that the optimized methods for filter adaptation are bitexact to
|
| // their reference counterparts.
|
| -TEST(AdaptiveFirFilter, FilterAdaptationOptimizations) {
|
| +TEST(AdaptiveFirFilter, FilterAdaptationSse2Optimizations) {
|
| bool use_sse2 = (WebRtc_GetCPUInfo(kSSE2) != 0);
|
| if (use_sse2) {
|
| RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 12,
|
| @@ -95,7 +200,7 @@ TEST(AdaptiveFirFilter, FilterAdaptationOptimizations) {
|
|
|
| // Verifies that the optimized method for frequency response computation is
|
| // bitexact to the reference counterpart.
|
| -TEST(AdaptiveFirFilter, UpdateFrequencyResponseOptimization) {
|
| +TEST(AdaptiveFirFilter, UpdateFrequencyResponseSse2Optimization) {
|
| bool use_sse2 = (WebRtc_GetCPUInfo(kSSE2) != 0);
|
| if (use_sse2) {
|
| const size_t kNumPartitions = 12;
|
| @@ -123,7 +228,7 @@ TEST(AdaptiveFirFilter, UpdateFrequencyResponseOptimization) {
|
|
|
| // Verifies that the optimized method for echo return loss computation is
|
| // bitexact to the reference counterpart.
|
| -TEST(AdaptiveFirFilter, UpdateErlOptimization) {
|
| +TEST(AdaptiveFirFilter, UpdateErlSse2Optimization) {
|
| bool use_sse2 = (WebRtc_GetCPUInfo(kSSE2) != 0);
|
| if (use_sse2) {
|
| const size_t kNumPartitions = 12;
|
|
|