| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. | 2 * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
| 5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
| 6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
| 7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
| 8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
| 9 */ | 9 */ |
| 10 | 10 |
| (...skipping 22 matching lines...) Expand all Loading... |
| 33 | 33 |
| 34 // Apply soft noise gate of -78 dBFS. | 34 // Apply soft noise gate of -78 dBFS. |
| 35 constexpr float kNoiseGatePower = 27509.42f; | 35 constexpr float kNoiseGatePower = 27509.42f; |
| 36 std::for_each(X2->begin(), X2->end(), [kNoiseGatePower](float& a) { | 36 std::for_each(X2->begin(), X2->end(), [kNoiseGatePower](float& a) { |
| 37 if (kNoiseGatePower > a) { | 37 if (kNoiseGatePower > a) { |
| 38 a = std::max(0.f, a - 0.3f * (kNoiseGatePower - a)); | 38 a = std::max(0.f, a - 0.3f * (kNoiseGatePower - a)); |
| 39 } | 39 } |
| 40 }); | 40 }); |
| 41 } | 41 } |
| 42 | 42 |
| 43 constexpr int kNoiseFloorCounterMax = 50; |
| 44 constexpr float kNoiseFloorMin = 10.f * 10.f * 128.f * 128.f; |
| 45 |
| 46 // Updates estimate for the power of the stationary noise component in the |
| 47 // render signal. |
| 48 void RenderNoisePower( |
| 49 const RenderBuffer& render_buffer, |
| 50 std::array<float, kFftLengthBy2Plus1>* X2_noise_floor, |
| 51 std::array<int, kFftLengthBy2Plus1>* X2_noise_floor_counter) { |
| 52 RTC_DCHECK(X2_noise_floor); |
| 53 RTC_DCHECK(X2_noise_floor_counter); |
| 54 |
| 55 const auto render_power = render_buffer.Spectrum(0); |
| 56 RTC_DCHECK_EQ(X2_noise_floor->size(), render_power.size()); |
| 57 RTC_DCHECK_EQ(X2_noise_floor_counter->size(), render_power.size()); |
| 58 |
| 59 // Estimate the stationary noise power in a minimum statistics manner. |
| 60 for (size_t k = 0; k < render_power.size(); ++k) { |
| 61 // Decrease rapidly. |
| 62 if (render_power[k] < (*X2_noise_floor)[k]) { |
| 63 (*X2_noise_floor)[k] = render_power[k]; |
| 64 (*X2_noise_floor_counter)[k] = 0; |
| 65 } else { |
| 66 // Increase in a delayed, leaky manner. |
| 67 if ((*X2_noise_floor_counter)[k] >= kNoiseFloorCounterMax) { |
| 68 (*X2_noise_floor)[k] = |
| 69 std::max((*X2_noise_floor)[k] * 1.1f, kNoiseFloorMin); |
| 70 } else { |
| 71 ++(*X2_noise_floor_counter)[k]; |
| 72 } |
| 73 } |
| 74 } |
| 75 } |
| 76 |
| 77 // Assume a minimum echo path gain of -33 dB for headsets. |
| 78 constexpr float kHeadsetEchoPathGain = 0.0005f; |
| 79 |
| 43 } // namespace | 80 } // namespace |
| 44 | 81 |
| 45 ResidualEchoEstimator::ResidualEchoEstimator() { | 82 ResidualEchoEstimator::ResidualEchoEstimator() { |
| 46 Reset(); | 83 Reset(); |
| 47 } | 84 } |
| 48 | 85 |
| 49 ResidualEchoEstimator::~ResidualEchoEstimator() = default; | 86 ResidualEchoEstimator::~ResidualEchoEstimator() = default; |
| 50 | 87 |
| 51 void ResidualEchoEstimator::Estimate( | 88 void ResidualEchoEstimator::Estimate( |
| 52 bool using_subtractor_output, | 89 bool using_subtractor_output, |
| 53 const AecState& aec_state, | 90 const AecState& aec_state, |
| 54 const RenderBuffer& render_buffer, | 91 const RenderBuffer& render_buffer, |
| 55 const std::array<float, kFftLengthBy2Plus1>& S2_linear, | 92 const std::array<float, kFftLengthBy2Plus1>& S2_linear, |
| 56 const std::array<float, kFftLengthBy2Plus1>& Y2, | 93 const std::array<float, kFftLengthBy2Plus1>& Y2, |
| 57 std::array<float, kFftLengthBy2Plus1>* R2) { | 94 std::array<float, kFftLengthBy2Plus1>* R2) { |
| 58 RTC_DCHECK(R2); | 95 RTC_DCHECK(R2); |
| 59 | 96 |
| 60 // Return zero residual echo power when a headset is detected. | |
| 61 if (aec_state.HeadsetDetected()) { | |
| 62 if (!headset_detected_cached_) { | |
| 63 Reset(); | |
| 64 headset_detected_cached_ = true; | |
| 65 } | |
| 66 R2->fill(0.f); | |
| 67 return; | |
| 68 } else { | |
| 69 headset_detected_cached_ = false; | |
| 70 } | |
| 71 | |
| 72 const rtc::Optional<size_t> delay = | 97 const rtc::Optional<size_t> delay = |
| 73 aec_state.FilterDelay() | 98 aec_state.FilterDelay() |
| 74 ? aec_state.FilterDelay() | 99 ? aec_state.FilterDelay() |
| 75 : (aec_state.ExternalDelay() ? aec_state.ExternalDelay() | 100 : (aec_state.ExternalDelay() ? aec_state.ExternalDelay() |
| 76 : rtc::Optional<size_t>()); | 101 : rtc::Optional<size_t>()); |
| 77 | 102 |
| 103 // Estimate the power of the stationary noise in the render signal. |
| 104 RenderNoisePower(render_buffer, &X2_noise_floor_, &X2_noise_floor_counter_); |
| 105 |
| 78 // Estimate the residual echo power. | 106 // Estimate the residual echo power. |
| 79 const bool use_linear_echo_power = | 107 const bool use_linear_echo_power = |
| 80 aec_state.UsableLinearEstimate() && using_subtractor_output; | 108 aec_state.UsableLinearEstimate() && using_subtractor_output; |
| 81 if (use_linear_echo_power) { | 109 if (use_linear_echo_power && !aec_state.HeadsetDetected()) { |
| 82 RTC_DCHECK(aec_state.FilterDelay()); | 110 RTC_DCHECK(aec_state.FilterDelay()); |
| 83 const int filter_delay = *aec_state.FilterDelay(); | 111 const int filter_delay = *aec_state.FilterDelay(); |
| 84 LinearEstimate(S2_linear, aec_state.Erle(), filter_delay, R2); | 112 LinearEstimate(S2_linear, aec_state.Erle(), filter_delay, R2); |
| 85 AddEchoReverb(S2_linear, aec_state.SaturatedEcho(), filter_delay, | 113 AddEchoReverb(S2_linear, aec_state.SaturatedEcho(), filter_delay, |
| 86 aec_state.ReverbDecayFactor(), R2); | 114 aec_state.ReverbDecayFactor(), R2); |
| 87 } else { | 115 } else { |
| 88 // Estimate the echo generating signal power. | 116 // Estimate the echo generating signal power. |
| 89 std::array<float, kFftLengthBy2Plus1> X2; | 117 std::array<float, kFftLengthBy2Plus1> X2; |
| 90 if (aec_state.ExternalDelay() || aec_state.FilterDelay()) { | 118 if (aec_state.ExternalDelay() || aec_state.FilterDelay()) { |
| 91 RTC_DCHECK(delay); | 119 RTC_DCHECK(delay); |
| 92 const int delay_use = static_cast<int>(*delay); | 120 const int delay_use = static_cast<int>(*delay); |
| 93 | 121 |
| 94 // Computes the spectral power over the blocks surrounding the delay. | 122 // Computes the spectral power over the blocks surrounding the delay. |
| 95 RTC_DCHECK_LT(delay_use, kResidualEchoPowerRenderWindowSize); | 123 RTC_DCHECK_LT(delay_use, kResidualEchoPowerRenderWindowSize); |
| 96 EchoGeneratingPower( | 124 EchoGeneratingPower( |
| 97 render_buffer, std::max(0, delay_use - 1), | 125 render_buffer, std::max(0, delay_use - 1), |
| 98 std::min(kResidualEchoPowerRenderWindowSize - 1, delay_use + 1), &X2); | 126 std::min(kResidualEchoPowerRenderWindowSize - 1, delay_use + 1), &X2); |
| 99 } else { | 127 } else { |
| 100 // Computes the spectral power over the latest blocks. | 128 // Computes the spectral power over the latest blocks. |
| 101 EchoGeneratingPower(render_buffer, 0, | 129 EchoGeneratingPower(render_buffer, 0, |
| 102 kResidualEchoPowerRenderWindowSize - 1, &X2); | 130 kResidualEchoPowerRenderWindowSize - 1, &X2); |
| 103 } | 131 } |
| 104 | 132 |
| 105 NonLinearEstimate(X2, Y2, R2); | 133 // Subtract the stationary noise power to avoid stationary noise causing |
| 134 // excessive echo suppression. |
| 135 std::transform( |
| 136 X2.begin(), X2.end(), X2_noise_floor_.begin(), X2.begin(), |
| 137 [](float a, float b) { return std::max(0.f, a - 10.f * b); }); |
| 138 |
| 139 NonLinearEstimate( |
| 140 aec_state.HeadsetDetected() ? kHeadsetEchoPathGain : kFixedEchoPathGain, |
| 141 X2, Y2, R2); |
| 106 AddEchoReverb(*R2, aec_state.SaturatedEcho(), | 142 AddEchoReverb(*R2, aec_state.SaturatedEcho(), |
| 107 std::min(static_cast<size_t>(kAdaptiveFilterLength), | 143 std::min(static_cast<size_t>(kAdaptiveFilterLength), |
| 108 delay.value_or(kAdaptiveFilterLength)), | 144 delay.value_or(kAdaptiveFilterLength)), |
| 109 aec_state.ReverbDecayFactor(), R2); | 145 aec_state.ReverbDecayFactor(), R2); |
| 110 } | 146 } |
| 111 | 147 |
| 112 // If the echo is saturated, estimate the echo power as the maximum echo power | 148 // If the echo is saturated, estimate the echo power as the maximum echo power |
| 113 // with a leakage factor. | 149 // with a leakage factor. |
| 114 if (aec_state.SaturatedEcho()) { | 150 if (aec_state.SaturatedEcho()) { |
| 115 R2->fill((*std::max_element(R2->begin(), R2->end())) * 100.f); | 151 R2->fill((*std::max_element(R2->begin(), R2->end())) * 100.f); |
| 116 } | 152 } |
| 117 | 153 |
| 118 std::copy(R2->begin(), R2->end(), R2_old_.begin()); | 154 std::copy(R2->begin(), R2->end(), R2_old_.begin()); |
| 119 } | 155 } |
| 120 | 156 |
| 121 void ResidualEchoEstimator::Reset() { | 157 void ResidualEchoEstimator::Reset() { |
| 158 X2_noise_floor_counter_.fill(kNoiseFloorCounterMax); |
| 159 X2_noise_floor_.fill(kNoiseFloorMin); |
| 122 R2_reverb_.fill(0.f); | 160 R2_reverb_.fill(0.f); |
| 123 R2_old_.fill(0.f); | 161 R2_old_.fill(0.f); |
| 124 R2_hold_counter_.fill(0.f); | 162 R2_hold_counter_.fill(0.f); |
| 125 for (auto& S2_k : S2_old_) { | 163 for (auto& S2_k : S2_old_) { |
| 126 S2_k.fill(0.f); | 164 S2_k.fill(0.f); |
| 127 } | 165 } |
| 128 } | 166 } |
| 129 | 167 |
| 130 void ResidualEchoEstimator::LinearEstimate( | 168 void ResidualEchoEstimator::LinearEstimate( |
| 131 const std::array<float, kFftLengthBy2Plus1>& S2_linear, | 169 const std::array<float, kFftLengthBy2Plus1>& S2_linear, |
| 132 const std::array<float, kFftLengthBy2Plus1>& erle, | 170 const std::array<float, kFftLengthBy2Plus1>& erle, |
| 133 size_t delay, | 171 size_t delay, |
| 134 std::array<float, kFftLengthBy2Plus1>* R2) { | 172 std::array<float, kFftLengthBy2Plus1>* R2) { |
| 135 std::fill(R2_hold_counter_.begin(), R2_hold_counter_.end(), 10.f); | 173 std::fill(R2_hold_counter_.begin(), R2_hold_counter_.end(), 10.f); |
| 136 std::transform(erle.begin(), erle.end(), S2_linear.begin(), R2->begin(), | 174 std::transform(erle.begin(), erle.end(), S2_linear.begin(), R2->begin(), |
| 137 [](float a, float b) { | 175 [](float a, float b) { |
| 138 RTC_DCHECK_LT(0.f, a); | 176 RTC_DCHECK_LT(0.f, a); |
| 139 return b / a; | 177 return b / a; |
| 140 }); | 178 }); |
| 141 } | 179 } |
| 142 | 180 |
| 143 void ResidualEchoEstimator::NonLinearEstimate( | 181 void ResidualEchoEstimator::NonLinearEstimate( |
| 182 float echo_path_gain, |
| 144 const std::array<float, kFftLengthBy2Plus1>& X2, | 183 const std::array<float, kFftLengthBy2Plus1>& X2, |
| 145 const std::array<float, kFftLengthBy2Plus1>& Y2, | 184 const std::array<float, kFftLengthBy2Plus1>& Y2, |
| 146 std::array<float, kFftLengthBy2Plus1>* R2) { | 185 std::array<float, kFftLengthBy2Plus1>* R2) { |
| 147 // Compute preliminary residual echo. | 186 // Compute preliminary residual echo. |
| 148 // TODO(peah): Try to make this adaptive. Currently the gain is hardcoded to | |
| 149 // 20 dB. | |
| 150 std::transform(X2.begin(), X2.end(), R2->begin(), | 187 std::transform(X2.begin(), X2.end(), R2->begin(), |
| 151 [](float a) { return a * kFixedEchoPathGain; }); | 188 [echo_path_gain](float a) { return a * echo_path_gain; }); |
| 152 | 189 |
| 153 for (size_t k = 0; k < R2->size(); ++k) { | 190 for (size_t k = 0; k < R2->size(); ++k) { |
| 154 // Update hold counter. | 191 // Update hold counter. |
| 155 R2_hold_counter_[k] = R2_old_[k] < (*R2)[k] ? 0 : R2_hold_counter_[k] + 1; | 192 R2_hold_counter_[k] = R2_old_[k] < (*R2)[k] ? 0 : R2_hold_counter_[k] + 1; |
| 156 | 193 |
| 157 // Compute the residual echo by holding a maximum echo powers and an echo | 194 // Compute the residual echo by holding a maximum echo powers and an echo |
| 158 // fading corresponding to a room with an RT60 value of about 50 ms. | 195 // fading corresponding to a room with an RT60 value of about 50 ms. |
| 159 (*R2)[k] = R2_hold_counter_[k] < 2 | 196 (*R2)[k] = R2_hold_counter_[k] < 2 |
| 160 ? std::max((*R2)[k], R2_old_[k]) | 197 ? std::max((*R2)[k], R2_old_[k]) |
| 161 : std::min((*R2)[k] + R2_old_[k] * 0.1f, Y2[k]); | 198 : std::min((*R2)[k] + R2_old_[k] * 0.1f, Y2[k]); |
| (...skipping 35 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 197 } else { | 234 } else { |
| 198 std::copy(S2.begin(), S2.end(), S2_old_[S2_old_index_].begin()); | 235 std::copy(S2.begin(), S2.end(), S2_old_[S2_old_index_].begin()); |
| 199 } | 236 } |
| 200 | 237 |
| 201 // Add the power of the echo reverb to the residual echo power. | 238 // Add the power of the echo reverb to the residual echo power. |
| 202 std::transform(R2->begin(), R2->end(), R2_reverb_.begin(), R2->begin(), | 239 std::transform(R2->begin(), R2->end(), R2_reverb_.begin(), R2->begin(), |
| 203 std::plus<float>()); | 240 std::plus<float>()); |
| 204 } | 241 } |
| 205 | 242 |
| 206 } // namespace webrtc | 243 } // namespace webrtc |
| OLD | NEW |