| Index: webrtc/modules/audio_processing/aec3/residual_echo_estimator.cc
|
| diff --git a/webrtc/modules/audio_processing/aec3/residual_echo_estimator.cc b/webrtc/modules/audio_processing/aec3/residual_echo_estimator.cc
|
| index fd848d30af756bfbacb13dce5ec687060256e9eb..0a9ecac2838308c0aeb557abe3c34f9af23c6b6f 100644
|
| --- a/webrtc/modules/audio_processing/aec3/residual_echo_estimator.cc
|
| +++ b/webrtc/modules/audio_processing/aec3/residual_echo_estimator.cc
|
| @@ -40,53 +40,10 @@ void EchoGeneratingPower(const RenderBuffer& render_buffer,
|
| });
|
| }
|
|
|
| -// Estimates the residual echo power based on the erle and the linear power
|
| -// estimate.
|
| -void LinearResidualPowerEstimate(
|
| - const std::array<float, kFftLengthBy2Plus1>& S2_linear,
|
| - const std::array<float, kFftLengthBy2Plus1>& erle,
|
| - std::array<int, kFftLengthBy2Plus1>* R2_hold_counter,
|
| - std::array<float, kFftLengthBy2Plus1>* R2) {
|
| - std::fill(R2_hold_counter->begin(), R2_hold_counter->end(), 10.f);
|
| - std::transform(erle.begin(), erle.end(), S2_linear.begin(), R2->begin(),
|
| - [](float a, float b) {
|
| - RTC_DCHECK_LT(0.f, a);
|
| - return b / a;
|
| - });
|
| -}
|
| -
|
| -// Estimates the residual echo power based on the estimate of the echo path
|
| -// gain.
|
| -void NonLinearResidualPowerEstimate(
|
| - const std::array<float, kFftLengthBy2Plus1>& X2,
|
| - const std::array<float, kFftLengthBy2Plus1>& Y2,
|
| - const std::array<float, kFftLengthBy2Plus1>& R2_old,
|
| - std::array<int, kFftLengthBy2Plus1>* R2_hold_counter,
|
| - std::array<float, kFftLengthBy2Plus1>* R2) {
|
| - // Compute preliminary residual echo.
|
| - // TODO(peah): Try to make this adaptive. Currently the gain is hardcoded to
|
| - // 20 dB.
|
| - std::transform(X2.begin(), X2.end(), R2->begin(),
|
| - [](float a) { return a * kFixedEchoPathGain; });
|
| -
|
| - for (size_t k = 0; k < R2->size(); ++k) {
|
| - // Update hold counter.
|
| - (*R2_hold_counter)[k] =
|
| - R2_old[k] < (*R2)[k] ? 0 : (*R2_hold_counter)[k] + 1;
|
| -
|
| - // Compute the residual echo by holding a maximum echo powers and an echo
|
| - // fading corresponding to a room with an RT60 value of about 50 ms.
|
| - (*R2)[k] = (*R2_hold_counter)[k] < 2
|
| - ? std::max((*R2)[k], R2_old[k])
|
| - : std::min((*R2)[k] + R2_old[k] * 0.1f, Y2[k]);
|
| - }
|
| -}
|
| -
|
| } // namespace
|
|
|
| ResidualEchoEstimator::ResidualEchoEstimator() {
|
| - R2_old_.fill(0.f);
|
| - R2_hold_counter_.fill(0);
|
| + Reset();
|
| }
|
|
|
| ResidualEchoEstimator::~ResidualEchoEstimator() = default;
|
| @@ -102,45 +59,148 @@ void ResidualEchoEstimator::Estimate(
|
|
|
| // Return zero residual echo power when a headset is detected.
|
| if (aec_state.HeadsetDetected()) {
|
| + if (!headset_detected_cached_) {
|
| + Reset();
|
| + headset_detected_cached_ = true;
|
| + }
|
| R2->fill(0.f);
|
| - R2_old_.fill(0.f);
|
| - R2_hold_counter_.fill(0.f);
|
| return;
|
| - }
|
| -
|
| - // Estimate the echo generating signal power.
|
| - std::array<float, kFftLengthBy2Plus1> X2;
|
| - if (aec_state.ExternalDelay() || aec_state.FilterDelay()) {
|
| - const int delay =
|
| - static_cast<int>(aec_state.FilterDelay() ? *aec_state.FilterDelay()
|
| - : *aec_state.ExternalDelay());
|
| - // Computes the spectral power over that blocks surrounding the delauy..
|
| - EchoGeneratingPower(
|
| - render_buffer, std::max(0, delay - 1),
|
| - std::min(kResidualEchoPowerRenderWindowSize - 1, delay + 1), &X2);
|
| } else {
|
| - // Computes the spectral power over that last 30 blocks.
|
| - EchoGeneratingPower(render_buffer, 0,
|
| - kResidualEchoPowerRenderWindowSize - 1, &X2);
|
| + headset_detected_cached_ = false;
|
| }
|
|
|
| + const rtc::Optional<size_t> delay =
|
| + aec_state.FilterDelay()
|
| + ? aec_state.FilterDelay()
|
| + : (aec_state.ExternalDelay() ? aec_state.ExternalDelay()
|
| + : rtc::Optional<size_t>());
|
| +
|
| // Estimate the residual echo power.
|
| - if ((aec_state.UsableLinearEstimate() && using_subtractor_output)) {
|
| - LinearResidualPowerEstimate(S2_linear, aec_state.Erle(), &R2_hold_counter_,
|
| - R2);
|
| + const bool use_linear_echo_power =
|
| + aec_state.UsableLinearEstimate() && using_subtractor_output;
|
| + if (use_linear_echo_power) {
|
| + RTC_DCHECK(aec_state.FilterDelay());
|
| + const int filter_delay = *aec_state.FilterDelay();
|
| + LinearEstimate(S2_linear, aec_state.Erle(), filter_delay, R2);
|
| + AddEchoReverb(S2_linear, aec_state.SaturatedEcho(), filter_delay,
|
| + aec_state.ReverbDecayFactor(), R2);
|
| } else {
|
| - NonLinearResidualPowerEstimate(X2, Y2, R2_old_, &R2_hold_counter_, R2);
|
| + // Estimate the echo generating signal power.
|
| + std::array<float, kFftLengthBy2Plus1> X2;
|
| + if (aec_state.ExternalDelay() || aec_state.FilterDelay()) {
|
| + RTC_DCHECK(delay);
|
| + const int delay_use = static_cast<int>(*delay);
|
| +
|
| + // Computes the spectral power over the blocks surrounding the delay.
|
| + RTC_DCHECK_LT(delay_use, kResidualEchoPowerRenderWindowSize);
|
| + EchoGeneratingPower(
|
| + render_buffer, std::max(0, delay_use - 1),
|
| + std::min(kResidualEchoPowerRenderWindowSize - 1, delay_use + 1), &X2);
|
| + } else {
|
| + // Computes the spectral power over the latest blocks.
|
| + EchoGeneratingPower(render_buffer, 0,
|
| + kResidualEchoPowerRenderWindowSize - 1, &X2);
|
| + }
|
| +
|
| + NonLinearEstimate(X2, Y2, R2);
|
| + AddEchoReverb(*R2, aec_state.SaturatedEcho(),
|
| + std::min(static_cast<size_t>(kAdaptiveFilterLength),
|
| + delay.value_or(kAdaptiveFilterLength)),
|
| + aec_state.ReverbDecayFactor(), R2);
|
| }
|
|
|
| // If the echo is saturated, estimate the echo power as the maximum echo power
|
| // with a leakage factor.
|
| if (aec_state.SaturatedEcho()) {
|
| - constexpr float kSaturationLeakageFactor = 100.f;
|
| - R2->fill((*std::max_element(R2->begin(), R2->end())) *
|
| - kSaturationLeakageFactor);
|
| + R2->fill((*std::max_element(R2->begin(), R2->end())) * 100.f);
|
| }
|
|
|
| std::copy(R2->begin(), R2->end(), R2_old_.begin());
|
| }
|
|
|
| +void ResidualEchoEstimator::Reset() {
|
| + R2_reverb_.fill(0.f);
|
| + R2_old_.fill(0.f);
|
| + R2_hold_counter_.fill(0.f);
|
| + for (auto& S2_k : S2_old_) {
|
| + S2_k.fill(0.f);
|
| + }
|
| +}
|
| +
|
| +void ResidualEchoEstimator::LinearEstimate(
|
| + const std::array<float, kFftLengthBy2Plus1>& S2_linear,
|
| + const std::array<float, kFftLengthBy2Plus1>& erle,
|
| + size_t delay,
|
| + std::array<float, kFftLengthBy2Plus1>* R2) {
|
| + std::fill(R2_hold_counter_.begin(), R2_hold_counter_.end(), 10.f);
|
| + std::transform(erle.begin(), erle.end(), S2_linear.begin(), R2->begin(),
|
| + [](float a, float b) {
|
| + RTC_DCHECK_LT(0.f, a);
|
| + return b / a;
|
| + });
|
| +}
|
| +
|
| +void ResidualEchoEstimator::NonLinearEstimate(
|
| + const std::array<float, kFftLengthBy2Plus1>& X2,
|
| + const std::array<float, kFftLengthBy2Plus1>& Y2,
|
| + std::array<float, kFftLengthBy2Plus1>* R2) {
|
| + // Compute preliminary residual echo.
|
| + // TODO(peah): Try to make this adaptive. Currently the gain is hardcoded to
|
| + // 20 dB.
|
| + std::transform(X2.begin(), X2.end(), R2->begin(),
|
| + [](float a) { return a * kFixedEchoPathGain; });
|
| +
|
| + for (size_t k = 0; k < R2->size(); ++k) {
|
| + // Update hold counter.
|
| + R2_hold_counter_[k] = R2_old_[k] < (*R2)[k] ? 0 : R2_hold_counter_[k] + 1;
|
| +
|
| + // Compute the residual echo by holding a maximum echo powers and an echo
|
| + // fading corresponding to a room with an RT60 value of about 50 ms.
|
| + (*R2)[k] = R2_hold_counter_[k] < 2
|
| + ? std::max((*R2)[k], R2_old_[k])
|
| + : std::min((*R2)[k] + R2_old_[k] * 0.1f, Y2[k]);
|
| + }
|
| +}
|
| +
|
| +void ResidualEchoEstimator::AddEchoReverb(
|
| + const std::array<float, kFftLengthBy2Plus1>& S2,
|
| + bool saturated_echo,
|
| + size_t delay,
|
| + float reverb_decay_factor,
|
| + std::array<float, kFftLengthBy2Plus1>* R2) {
|
| + // Compute the decay factor for how much the echo has decayed before leaving
|
| + // the region covered by the linear model.
|
| + auto integer_power = [](float base, int exp) {
|
| + float result = 1.f;
|
| + for (int k = 0; k < exp; ++k) {
|
| + result *= base;
|
| + }
|
| + return result;
|
| + };
|
| + RTC_DCHECK_LE(delay, S2_old_.size());
|
| + const float reverb_decay_for_delay =
|
| + integer_power(reverb_decay_factor, S2_old_.size() - delay);
|
| +
|
| + // Update the estimate of the reverberant residual echo power.
|
| + S2_old_index_ = S2_old_index_ > 0 ? S2_old_index_ - 1 : S2_old_.size() - 1;
|
| + const auto& S2_end = S2_old_[S2_old_index_];
|
| + std::transform(
|
| + S2_end.begin(), S2_end.end(), R2_reverb_.begin(), R2_reverb_.begin(),
|
| + [reverb_decay_for_delay, reverb_decay_factor](float a, float b) {
|
| + return (b + a * reverb_decay_for_delay) * reverb_decay_factor;
|
| + });
|
| +
|
| + // Update the buffer of old echo powers.
|
| + if (saturated_echo) {
|
| + S2_old_[S2_old_index_].fill((*std::max_element(S2.begin(), S2.end())) *
|
| + 100.f);
|
| + } else {
|
| + std::copy(S2.begin(), S2.end(), S2_old_[S2_old_index_].begin());
|
| + }
|
| +
|
| + // Add the power of the echo reverb to the residual echo power.
|
| + std::transform(R2->begin(), R2->end(), R2_reverb_.begin(), R2->begin(),
|
| + std::plus<float>());
|
| +}
|
| +
|
| } // namespace webrtc
|
|
|