Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1563)

Unified Diff: webrtc/modules/congestion_controller/delay_based_bwe.cc

Issue 2791743002: Revert of Enable trendline experiment and bayesian bitrate estimator experiment by default. (Closed)
Patch Set: Created 3 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: webrtc/modules/congestion_controller/delay_based_bwe.cc
diff --git a/webrtc/modules/congestion_controller/delay_based_bwe.cc b/webrtc/modules/congestion_controller/delay_based_bwe.cc
index 042d7fa74aaf99cc20bdebdcaccf0537f9561b75..e8d9d21050f21d1b931999b758979b95ec953bcb 100644
--- a/webrtc/modules/congestion_controller/delay_based_bwe.cc
+++ b/webrtc/modules/congestion_controller/delay_based_bwe.cc
@@ -42,12 +42,86 @@
constexpr int kRateWindowMs = 150;
// Parameters for linear least squares fit of regression line to noisy data.
-constexpr size_t kDefaultTrendlineWindowSize = 20;
+constexpr size_t kDefaultTrendlineWindowSize = 15;
constexpr double kDefaultTrendlineSmoothingCoeff = 0.9;
constexpr double kDefaultTrendlineThresholdGain = 4.0;
+// Parameters for Theil-Sen robust fitting of line to noisy data.
+constexpr size_t kDefaultMedianSlopeWindowSize = 20;
+constexpr double kDefaultMedianSlopeThresholdGain = 4.0;
+
constexpr int kMaxConsecutiveFailedLookups = 5;
+const char kBitrateEstimateExperiment[] = "WebRTC-ImprovedBitrateEstimate";
+const char kBweTrendlineFilterExperiment[] = "WebRTC-BweTrendlineFilter";
+const char kBweMedianSlopeFilterExperiment[] = "WebRTC-BweMedianSlopeFilter";
+
+bool BitrateEstimateExperimentIsEnabled() {
+ return webrtc::field_trial::IsEnabled(kBitrateEstimateExperiment);
+}
+
+bool TrendlineFilterExperimentIsEnabled() {
+ std::string experiment_string =
+ webrtc::field_trial::FindFullName(kBweTrendlineFilterExperiment);
+ // The experiment is enabled iff the field trial string begins with "Enabled".
+ return experiment_string.find("Enabled") == 0;
+}
+
+bool MedianSlopeFilterExperimentIsEnabled() {
+ std::string experiment_string =
+ webrtc::field_trial::FindFullName(kBweMedianSlopeFilterExperiment);
+ // The experiment is enabled iff the field trial string begins with "Enabled".
+ return experiment_string.find("Enabled") == 0;
+}
+
+bool ReadTrendlineFilterExperimentParameters(size_t* window_size,
+ double* smoothing_coef,
+ double* threshold_gain) {
+ RTC_DCHECK(TrendlineFilterExperimentIsEnabled());
+ RTC_DCHECK(!MedianSlopeFilterExperimentIsEnabled());
+ RTC_DCHECK(window_size != nullptr);
+ RTC_DCHECK(smoothing_coef != nullptr);
+ RTC_DCHECK(threshold_gain != nullptr);
+ std::string experiment_string =
+ webrtc::field_trial::FindFullName(kBweTrendlineFilterExperiment);
+ int parsed_values = sscanf(experiment_string.c_str(), "Enabled-%zu,%lf,%lf",
+ window_size, smoothing_coef, threshold_gain);
+ if (parsed_values == 3) {
+ RTC_CHECK_GT(*window_size, 1) << "Need at least 2 points to fit a line.";
+ RTC_CHECK(0 <= *smoothing_coef && *smoothing_coef <= 1)
+ << "Coefficient needs to be between 0 and 1 for weighted average.";
+ RTC_CHECK_GT(*threshold_gain, 0) << "Threshold gain needs to be positive.";
+ return true;
+ }
+ LOG(LS_WARNING) << "Failed to parse parameters for BweTrendlineFilter "
+ "experiment from field trial string. Using default.";
+ *window_size = kDefaultTrendlineWindowSize;
+ *smoothing_coef = kDefaultTrendlineSmoothingCoeff;
+ *threshold_gain = kDefaultTrendlineThresholdGain;
+ return false;
+}
+
+bool ReadMedianSlopeFilterExperimentParameters(size_t* window_size,
+ double* threshold_gain) {
+ RTC_DCHECK(!TrendlineFilterExperimentIsEnabled());
+ RTC_DCHECK(MedianSlopeFilterExperimentIsEnabled());
+ RTC_DCHECK(window_size != nullptr);
+ RTC_DCHECK(threshold_gain != nullptr);
+ std::string experiment_string =
+ webrtc::field_trial::FindFullName(kBweMedianSlopeFilterExperiment);
+ int parsed_values = sscanf(experiment_string.c_str(), "Enabled-%zu,%lf",
+ window_size, threshold_gain);
+ if (parsed_values == 2) {
+ RTC_CHECK_GT(*window_size, 1) << "Need at least 2 points to fit a line.";
+ RTC_CHECK_GT(*threshold_gain, 0) << "Threshold gain needs to be positive.";
+ return true;
+ }
+ LOG(LS_WARNING) << "Failed to parse parameters for BweMedianSlopeFilter "
+ "experiment from field trial string. Using default.";
+ *window_size = kDefaultMedianSlopeWindowSize;
+ *threshold_gain = kDefaultMedianSlopeThresholdGain;
+ return false;
+}
class PacketFeedbackComparator {
public:
@@ -79,9 +153,19 @@
current_win_ms_(0),
prev_time_ms_(-1),
bitrate_estimate_(-1.0f),
- bitrate_estimate_var_(50.0f) {}
+ bitrate_estimate_var_(50.0f),
+ old_estimator_(kBitrateWindowMs, 8000),
+ in_experiment_(BitrateEstimateExperimentIsEnabled()) {}
void DelayBasedBwe::BitrateEstimator::Update(int64_t now_ms, int bytes) {
+ if (!in_experiment_) {
+ old_estimator_.Update(bytes, now_ms);
+ rtc::Optional<uint32_t> rate = old_estimator_.Rate(now_ms);
+ bitrate_estimate_ = -1.0f;
+ if (rate)
+ bitrate_estimate_ = *rate / 1000.0f;
+ return;
+ }
int rate_window_ms = kRateWindowMs;
// We use a larger window at the beginning to get a more stable sample that
// we can use to initialize the estimate.
@@ -147,9 +231,12 @@
}
DelayBasedBwe::DelayBasedBwe(RtcEventLog* event_log, const Clock* clock)
- : event_log_(event_log),
+ : in_trendline_experiment_(TrendlineFilterExperimentIsEnabled()),
+ in_median_slope_experiment_(MedianSlopeFilterExperimentIsEnabled()),
+ event_log_(event_log),
clock_(clock),
inter_arrival_(),
+ kalman_estimator_(),
trendline_estimator_(),
detector_(),
receiver_incoming_bitrate_(),
@@ -161,10 +248,29 @@
trendline_smoothing_coeff_(kDefaultTrendlineSmoothingCoeff),
trendline_threshold_gain_(kDefaultTrendlineThresholdGain),
probing_interval_estimator_(&rate_control_),
+ median_slope_window_size_(kDefaultMedianSlopeWindowSize),
+ median_slope_threshold_gain_(kDefaultMedianSlopeThresholdGain),
consecutive_delayed_feedbacks_(0),
last_logged_bitrate_(0),
last_logged_state_(kBwNormal) {
- LOG(LS_INFO) << "Using Trendline filter for delay change estimation.";
+ if (in_trendline_experiment_) {
+ ReadTrendlineFilterExperimentParameters(&trendline_window_size_,
+ &trendline_smoothing_coeff_,
+ &trendline_threshold_gain_);
+ LOG(LS_INFO) << "Trendline filter experiment enabled with parameters "
+ << trendline_window_size_ << ',' << trendline_smoothing_coeff_
+ << ',' << trendline_threshold_gain_;
+ }
+ if (in_median_slope_experiment_) {
+ ReadMedianSlopeFilterExperimentParameters(&median_slope_window_size_,
+ &median_slope_threshold_gain_);
+ LOG(LS_INFO) << "Median-slope filter experiment enabled with parameters "
+ << median_slope_window_size_ << ','
+ << median_slope_threshold_gain_;
+ }
+ if (!in_trendline_experiment_ && !in_median_slope_experiment_) {
+ LOG(LS_INFO) << "No overuse experiment enabled. Using Kalman filter.";
+ }
network_thread_.DetachFromThread();
}
@@ -237,9 +343,12 @@
inter_arrival_.reset(
new InterArrival((kTimestampGroupLengthMs << kInterArrivalShift) / 1000,
kTimestampToMs, true));
+ kalman_estimator_.reset(new OveruseEstimator(OverUseDetectorOptions()));
trendline_estimator_.reset(new TrendlineEstimator(
trendline_window_size_, trendline_smoothing_coeff_,
trendline_threshold_gain_));
+ median_slope_estimator_.reset(new MedianSlopeEstimator(
+ median_slope_window_size_, median_slope_threshold_gain_));
}
last_seen_packet_ms_ = now_ms;
@@ -261,11 +370,26 @@
now_ms, packet_feedback.payload_size,
&ts_delta, &t_delta, &size_delta)) {
double ts_delta_ms = (1000.0 * ts_delta) / (1 << kInterArrivalShift);
- trendline_estimator_->Update(t_delta, ts_delta_ms,
- packet_feedback.arrival_time_ms);
- detector_.Detect(trendline_estimator_->trendline_slope(), ts_delta_ms,
- trendline_estimator_->num_of_deltas(),
- packet_feedback.arrival_time_ms);
+ if (in_trendline_experiment_) {
+ trendline_estimator_->Update(t_delta, ts_delta_ms,
+ packet_feedback.arrival_time_ms);
+ detector_.Detect(trendline_estimator_->trendline_slope(), ts_delta_ms,
+ trendline_estimator_->num_of_deltas(),
+ packet_feedback.arrival_time_ms);
+ } else if (in_median_slope_experiment_) {
+ median_slope_estimator_->Update(t_delta, ts_delta_ms,
+ packet_feedback.arrival_time_ms);
+ detector_.Detect(median_slope_estimator_->trendline_slope(), ts_delta_ms,
+ median_slope_estimator_->num_of_deltas(),
+ packet_feedback.arrival_time_ms);
+ } else {
+ kalman_estimator_->Update(t_delta, ts_delta_ms, size_delta,
+ detector_.State(),
+ packet_feedback.arrival_time_ms);
+ detector_.Detect(kalman_estimator_->offset(), ts_delta_ms,
+ kalman_estimator_->num_of_deltas(),
+ packet_feedback.arrival_time_ms);
+ }
}
int probing_bps = 0;

Powered by Google App Engine
This is Rietveld 408576698