| Index: webrtc/modules/audio_processing/aec3/aec_state.cc
|
| diff --git a/webrtc/modules/audio_processing/aec3/aec_state.cc b/webrtc/modules/audio_processing/aec3/aec_state.cc
|
| index d2c0bddc59adedb11cf3c34f7ee8e6c1cfd9ab41..8e92f5fbdac3a4719428e1275bf966ca73b58151 100644
|
| --- a/webrtc/modules/audio_processing/aec3/aec_state.cc
|
| +++ b/webrtc/modules/audio_processing/aec3/aec_state.cc
|
| @@ -14,6 +14,7 @@
|
| #include <numeric>
|
| #include <vector>
|
|
|
| +#include "webrtc/base/array_view.h"
|
| #include "webrtc/base/atomicops.h"
|
| #include "webrtc/base/checks.h"
|
| #include "webrtc/modules/audio_processing/logging/apm_data_dumper.h"
|
| @@ -21,23 +22,23 @@
|
| namespace webrtc {
|
| namespace {
|
|
|
| -constexpr float kMaxFilterEstimateStrength = 1000.f;
|
| +constexpr size_t kEchoPathChangeConvergenceBlocks = 4 * kNumBlocksPerSecond;
|
| +constexpr size_t kSaturationLeakageBlocks = 20;
|
|
|
| -// Compute the delay of the adaptive filter as the partition with a distinct
|
| -// peak.
|
| -void AnalyzeFilter(
|
| +// Computes delay of the adaptive filter.
|
| +rtc::Optional<size_t> EstimateFilterDelay(
|
| const std::vector<std::array<float, kFftLengthBy2Plus1>>&
|
| - filter_frequency_response,
|
| - std::array<bool, kFftLengthBy2Plus1>* bands_with_reliable_filter,
|
| - std::array<float, kFftLengthBy2Plus1>* filter_estimate_strength,
|
| - rtc::Optional<size_t>* filter_delay) {
|
| - const auto& H2 = filter_frequency_response;
|
| + adaptive_filter_frequency_response) {
|
| + const auto& H2 = adaptive_filter_frequency_response;
|
|
|
| size_t reliable_delays_sum = 0;
|
| size_t num_reliable_delays = 0;
|
|
|
| constexpr size_t kUpperBin = kFftLengthBy2 - 5;
|
| + constexpr float kMinPeakMargin = 10.f;
|
| + const size_t kTailPartition = H2.size() - 1;
|
| for (size_t k = 1; k < kUpperBin; ++k) {
|
| + // Find the maximum of H2[j].
|
| int peak = 0;
|
| for (size_t j = 0; j < H2.size(); ++j) {
|
| if (H2[j][k] > H2[peak][k]) {
|
| @@ -45,43 +46,33 @@ void AnalyzeFilter(
|
| }
|
| }
|
|
|
| - if (H2[peak][k] == 0.f) {
|
| - (*filter_estimate_strength)[k] = 0.f;
|
| - } else if (H2[H2.size() - 1][k] == 0.f) {
|
| - (*filter_estimate_strength)[k] = kMaxFilterEstimateStrength;
|
| - } else {
|
| - (*filter_estimate_strength)[k] = std::min(
|
| - kMaxFilterEstimateStrength, H2[peak][k] / H2[H2.size() - 1][k]);
|
| - }
|
| -
|
| - constexpr float kMargin = 10.f;
|
| - if (kMargin * H2[H2.size() - 1][k] < H2[peak][k]) {
|
| - (*bands_with_reliable_filter)[k] = true;
|
| + // Count the peak as a delay only if the peak is sufficiently larger than
|
| + // the tail.
|
| + if (kMinPeakMargin * H2[kTailPartition][k] < H2[peak][k]) {
|
| reliable_delays_sum += peak;
|
| ++num_reliable_delays;
|
| - } else {
|
| - (*bands_with_reliable_filter)[k] = false;
|
| }
|
| }
|
| - (*bands_with_reliable_filter)[0] = (*bands_with_reliable_filter)[1];
|
| - std::fill(bands_with_reliable_filter->begin() + kUpperBin,
|
| - bands_with_reliable_filter->end(),
|
| - (*bands_with_reliable_filter)[kUpperBin - 1]);
|
| - (*filter_estimate_strength)[0] = (*filter_estimate_strength)[1];
|
| - std::fill(filter_estimate_strength->begin() + kUpperBin,
|
| - filter_estimate_strength->end(),
|
| - (*filter_estimate_strength)[kUpperBin - 1]);
|
| -
|
| - *filter_delay =
|
| - num_reliable_delays > 20
|
| - ? rtc::Optional<size_t>(reliable_delays_sum / num_reliable_delays)
|
| - : rtc::Optional<size_t>();
|
| +
|
| + // Return no delay if not sufficient delays have been found.
|
| + if (num_reliable_delays < 21) {
|
| + return rtc::Optional<size_t>();
|
| + }
|
| +
|
| + const size_t delay = reliable_delays_sum / num_reliable_delays;
|
| + // Sanity check that the peak is not caused by a false strong DC-component in
|
| + // the filter.
|
| + for (size_t k = 1; k < kUpperBin; ++k) {
|
| + if (H2[delay][k] > H2[delay][0]) {
|
| + RTC_DCHECK_GT(H2.size(), delay);
|
| + return rtc::Optional<size_t>(delay);
|
| + }
|
| + }
|
| + return rtc::Optional<size_t>();
|
| }
|
|
|
| -constexpr int kActiveRenderCounterInitial = 50;
|
| -constexpr int kActiveRenderCounterMax = 200;
|
| -constexpr int kEchoPathChangeCounterInitial = 50;
|
| -constexpr int kEchoPathChangeCounterMax = 3 * 250;
|
| +constexpr int kEchoPathChangeCounterInitial = kNumBlocksPerSecond / 5;
|
| +constexpr int kEchoPathChangeCounterMax = 3 * kNumBlocksPerSecond;
|
|
|
| } // namespace
|
|
|
| @@ -90,76 +81,80 @@ int AecState::instance_count_ = 0;
|
| AecState::AecState()
|
| : data_dumper_(
|
| new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))),
|
| - echo_path_change_counter_(kEchoPathChangeCounterInitial),
|
| - active_render_counter_(kActiveRenderCounterInitial) {
|
| - bands_with_reliable_filter_.fill(false);
|
| - filter_estimate_strength_.fill(0.f);
|
| -}
|
| + echo_path_change_counter_(kEchoPathChangeCounterInitial) {}
|
|
|
| AecState::~AecState() = default;
|
|
|
| +void AecState::HandleEchoPathChange(
|
| + const EchoPathVariability& echo_path_variability) {
|
| + if (echo_path_variability.AudioPathChanged()) {
|
| + blocks_since_last_saturation_ = 0;
|
| + active_render_blocks_ = 0;
|
| + echo_path_change_counter_ = kEchoPathChangeCounterMax;
|
| + usable_linear_estimate_ = false;
|
| + echo_leakage_detected_ = false;
|
| + capture_signal_saturation_ = false;
|
| + echo_saturation_ = false;
|
| + headset_detected_ = false;
|
| + previous_max_sample_ = 0.f;
|
| + }
|
| +}
|
| +
|
| void AecState::Update(const std::vector<std::array<float, kFftLengthBy2Plus1>>&
|
| - filter_frequency_response,
|
| + adaptive_filter_frequency_response,
|
| const rtc::Optional<size_t>& external_delay_samples,
|
| - const RenderBuffer& X_buffer,
|
| + const RenderBuffer& render_buffer,
|
| const std::array<float, kFftLengthBy2Plus1>& E2_main,
|
| - const std::array<float, kFftLengthBy2Plus1>& E2_shadow,
|
| const std::array<float, kFftLengthBy2Plus1>& Y2,
|
| rtc::ArrayView<const float> x,
|
| - const EchoPathVariability& echo_path_variability,
|
| bool echo_leakage_detected) {
|
| - filter_length_ = filter_frequency_response.size();
|
| - AnalyzeFilter(filter_frequency_response, &bands_with_reliable_filter_,
|
| - &filter_estimate_strength_, &filter_delay_);
|
| - // Compute the externally provided delay in partitions. The truncation is
|
| - // intended here.
|
| + // Store input parameters.
|
| + echo_leakage_detected_ = echo_leakage_detected;
|
| +
|
| + // Update counters.
|
| + const float x_energy = std::inner_product(x.begin(), x.end(), x.begin(), 0.f);
|
| + const bool active_render_block = x_energy > 10000.f * kFftLengthBy2;
|
| + active_render_blocks_ += active_render_block ? 1 : 0;
|
| + --echo_path_change_counter_;
|
| +
|
| + // Estimate delays.
|
| + filter_delay_ = EstimateFilterDelay(adaptive_filter_frequency_response);
|
| external_delay_ =
|
| external_delay_samples
|
| ? rtc::Optional<size_t>(*external_delay_samples / kBlockSize)
|
| : rtc::Optional<size_t>();
|
|
|
| - const float x_energy = std::inner_product(x.begin(), x.end(), x.begin(), 0.f);
|
| -
|
| - active_render_blocks_ =
|
| - echo_path_variability.AudioPathChanged() ? 0 : active_render_blocks_ + 1;
|
| -
|
| - echo_path_change_counter_ = echo_path_variability.AudioPathChanged()
|
| - ? kEchoPathChangeCounterMax
|
| - : echo_path_change_counter_ - 1;
|
| - active_render_counter_ = x_energy > 10000.f * kFftLengthBy2
|
| - ? kActiveRenderCounterMax
|
| - : active_render_counter_ - 1;
|
| -
|
| - usable_linear_estimate_ = filter_delay_ && echo_path_change_counter_ <= 0;
|
| -
|
| - echo_leakage_detected_ = echo_leakage_detected;
|
| -
|
| - model_based_aec_feasible_ = usable_linear_estimate_ || external_delay_;
|
| -
|
| - if (usable_linear_estimate_) {
|
| - const auto& X2 = X_buffer.Spectrum(*filter_delay_);
|
| -
|
| - // TODO(peah): Expose these as stats.
|
| + // Update the ERL and ERLE measures.
|
| + if (filter_delay_ && echo_path_change_counter_ <= 0) {
|
| + const auto& X2 = render_buffer.Spectrum(*filter_delay_);
|
| erle_estimator_.Update(X2, Y2, E2_main);
|
| erl_estimator_.Update(X2, Y2);
|
| -
|
| -// TODO(peah): Add working functionality for headset detection. Until the
|
| -// functionality for that is working the headset detector is hardcoded to detect
|
| -// no headset.
|
| -#if 0
|
| - const auto& erl = erl_estimator_.Erl();
|
| - const int low_erl_band_count = std::count_if(
|
| - erl.begin(), erl.end(), [](float a) { return a <= 0.1f; });
|
| -
|
| - const int noisy_band_count = std::count_if(
|
| - filter_estimate_strength_.begin(), filter_estimate_strength_.end(),
|
| - [](float a) { return a <= 10.f; });
|
| - headset_detected_ = low_erl_band_count > 20 && noisy_band_count > 20;
|
| -#endif
|
| - headset_detected_ = false;
|
| - } else {
|
| - headset_detected_ = false;
|
| }
|
| +
|
| + // Detect and flag echo saturation.
|
| + RTC_DCHECK_LT(0, x.size());
|
| + const float max_sample = fabs(*std::max_element(
|
| + x.begin(), x.end(), [](float a, float b) { return a * a < b * b; }));
|
| + const bool saturated_echo =
|
| + previous_max_sample_ * kFixedEchoPathGain > 1600 && SaturatedCapture();
|
| + previous_max_sample_ = max_sample;
|
| +
|
| + // Counts the blocks since saturation.
|
| + blocks_since_last_saturation_ =
|
| + saturated_echo ? 0 : blocks_since_last_saturation_ + 1;
|
| + echo_saturation_ = blocks_since_last_saturation_ < kSaturationLeakageBlocks;
|
| +
|
| + // Flag whether the linear filter estimate is usable.
|
| + usable_linear_estimate_ =
|
| + (!echo_saturation_) &&
|
| + active_render_blocks_ > kEchoPathChangeConvergenceBlocks &&
|
| + filter_delay_ && echo_path_change_counter_ <= 0;
|
| +
|
| + // After an amount of active render samples for which an echo should have been
|
| + // detected in the capture signal if the ERL was not infinite, flag that a
|
| + // headset is used.
|
| + headset_detected_ = !external_delay_ && !filter_delay_ &&
|
| + active_render_blocks_ >= kEchoPathChangeConvergenceBlocks;
|
| }
|
|
|
| } // namespace webrtc
|
|
|