| Index: webrtc/modules/audio_processing/aec3/aec_state_unittest.cc
|
| diff --git a/webrtc/modules/audio_processing/aec3/aec_state_unittest.cc b/webrtc/modules/audio_processing/aec3/aec_state_unittest.cc
|
| index 312d451946d3d8264861a40549a566da7f45ddef..71d62c9fbec2af9832dfb44299e94eb5cef083d1 100644
|
| --- a/webrtc/modules/audio_processing/aec3/aec_state_unittest.cc
|
| +++ b/webrtc/modules/audio_processing/aec3/aec_state_unittest.cc
|
| @@ -10,9 +10,6 @@
|
|
|
| #include "webrtc/modules/audio_processing/aec3/aec_state.h"
|
|
|
| -// TODO(peah): Reactivate once the next CL has landed.
|
| -#if 0
|
| -
|
| #include "webrtc/modules/audio_processing/logging/apm_data_dumper.h"
|
| #include "webrtc/test/gtest.h"
|
|
|
| @@ -22,13 +19,12 @@ namespace webrtc {
|
| TEST(AecState, NormalUsage) {
|
| ApmDataDumper data_dumper(42);
|
| AecState state;
|
| - FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30));
|
| + RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 30,
|
| + std::vector<size_t>(1, 30));
|
| std::array<float, kFftLengthBy2Plus1> E2_main;
|
| - std::array<float, kFftLengthBy2Plus1> E2_shadow;
|
| std::array<float, kFftLengthBy2Plus1> Y2;
|
| - std::array<float, kBlockSize> x;
|
| + std::vector<std::vector<float>> x(3, std::vector<float>(kBlockSize, 0.f));
|
| EchoPathVariability echo_path_variability(false, false);
|
| - x.fill(0.f);
|
|
|
| std::vector<std::array<float, kFftLengthBy2Plus1>>
|
| converged_filter_frequency_response(10);
|
| @@ -38,165 +34,116 @@ TEST(AecState, NormalUsage) {
|
| std::vector<std::array<float, kFftLengthBy2Plus1>>
|
| diverged_filter_frequency_response = converged_filter_frequency_response;
|
| converged_filter_frequency_response[2].fill(100.f);
|
| + converged_filter_frequency_response[2][0] = 1.f;
|
|
|
| - // Verify that model based aec feasibility and linear AEC usability are false
|
| - // when the filter is diverged and there is no external delay reported.
|
| + // Verify that linear AEC usability is false when the filter is diverged and
|
| + // there is no external delay reported.
|
| state.Update(diverged_filter_frequency_response, rtc::Optional<size_t>(),
|
| - X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
|
| - false);
|
| - EXPECT_FALSE(state.ModelBasedAecFeasible());
|
| - EXPECT_FALSE(state.UsableLinearEstimate());
|
| -
|
| - // Verify that model based aec feasibility is true and that linear AEC
|
| - // usability is false when the filter is diverged and there is an external
|
| - // delay reported.
|
| - state.Update(diverged_filter_frequency_response, rtc::Optional<size_t>(),
|
| - X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
|
| - false);
|
| - EXPECT_FALSE(state.ModelBasedAecFeasible());
|
| - for (int k = 0; k < 50; ++k) {
|
| - state.Update(diverged_filter_frequency_response, rtc::Optional<size_t>(2),
|
| - X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
|
| - false);
|
| - }
|
| - EXPECT_TRUE(state.ModelBasedAecFeasible());
|
| + render_buffer, E2_main, Y2, x[0], false);
|
| EXPECT_FALSE(state.UsableLinearEstimate());
|
|
|
| // Verify that linear AEC usability is true when the filter is converged
|
| - for (int k = 0; k < 50; ++k) {
|
| + std::fill(x[0].begin(), x[0].end(), 101.f);
|
| + for (int k = 0; k < 3000; ++k) {
|
| state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
|
| - X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
|
| - false);
|
| + render_buffer, E2_main, Y2, x[0], false);
|
| }
|
| EXPECT_TRUE(state.UsableLinearEstimate());
|
|
|
| // Verify that linear AEC usability becomes false after an echo path change is
|
| // reported
|
| - echo_path_variability = EchoPathVariability(true, false);
|
| + state.HandleEchoPathChange(EchoPathVariability(true, false));
|
| state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
|
| - X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
|
| - false);
|
| + render_buffer, E2_main, Y2, x[0], false);
|
| EXPECT_FALSE(state.UsableLinearEstimate());
|
|
|
| // Verify that the active render detection works as intended.
|
| - x.fill(101.f);
|
| + std::fill(x[0].begin(), x[0].end(), 101.f);
|
| + state.HandleEchoPathChange(EchoPathVariability(true, true));
|
| state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
|
| - X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
|
| - false);
|
| - EXPECT_TRUE(state.ActiveRender());
|
| + render_buffer, E2_main, Y2, x[0], false);
|
| + EXPECT_FALSE(state.ActiveRender());
|
|
|
| - x.fill(0.f);
|
| - for (int k = 0; k < 200; ++k) {
|
| + for (int k = 0; k < 1000; ++k) {
|
| state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
|
| - X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
|
| - false);
|
| + render_buffer, E2_main, Y2, x[0], false);
|
| }
|
| - EXPECT_FALSE(state.ActiveRender());
|
| -
|
| - x.fill(101.f);
|
| - state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
|
| - X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
|
| - false);
|
| EXPECT_TRUE(state.ActiveRender());
|
|
|
| // Verify that echo leakage is properly reported.
|
| state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
|
| - X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
|
| - false);
|
| + render_buffer, E2_main, Y2, x[0], false);
|
| EXPECT_FALSE(state.EchoLeakageDetected());
|
|
|
| state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
|
| - X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
|
| - true);
|
| + render_buffer, E2_main, Y2, x[0], true);
|
| EXPECT_TRUE(state.EchoLeakageDetected());
|
|
|
| - // Verify that the bands containing reliable filter estimates are properly
|
| - // reported.
|
| - echo_path_variability = EchoPathVariability(false, false);
|
| - for (int k = 0; k < 200; ++k) {
|
| - state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
|
| - X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
|
| - false);
|
| - }
|
| -
|
| - FftData X;
|
| - X.re.fill(10000.f);
|
| - X.im.fill(0.f);
|
| - for (size_t k = 0; k < X_buffer.Buffer().size(); ++k) {
|
| - X_buffer.Insert(X);
|
| - }
|
| -
|
| - Y2.fill(10.f * 1000.f * 1000.f);
|
| - E2_main.fill(100.f * Y2[0]);
|
| - E2_shadow.fill(100.f * Y2[0]);
|
| - state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
|
| - X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
|
| - false);
|
| -
|
| - E2_main.fill(0.1f * Y2[0]);
|
| - E2_shadow.fill(E2_main[0]);
|
| - for (size_t k = 0; k < Y2.size(); k += 2) {
|
| - E2_main[k] = Y2[k];
|
| - E2_shadow[k] = Y2[k];
|
| + // Verify that the ERL is properly estimated
|
| + for (auto& x_k : x) {
|
| + x_k = std::vector<float>(kBlockSize, 0.f);
|
| }
|
| - state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
|
| - X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
|
| - false);
|
|
|
| - const std::array<bool, kFftLengthBy2Plus1>& reliable_bands =
|
| - state.BandsWithReliableFilter();
|
| -
|
| - EXPECT_EQ(reliable_bands[0], reliable_bands[1]);
|
| - for (size_t k = 1; k < kFftLengthBy2 - 5; ++k) {
|
| - EXPECT_TRUE(reliable_bands[k]);
|
| - }
|
| - for (size_t k = kFftLengthBy2 - 5; k < reliable_bands.size(); ++k) {
|
| - EXPECT_EQ(reliable_bands[kFftLengthBy2 - 6], reliable_bands[k]);
|
| + x[0][0] = 5000.f;
|
| + for (size_t k = 0; k < render_buffer.Buffer().size(); ++k) {
|
| + render_buffer.Insert(x);
|
| }
|
|
|
| - // Verify that the ERL is properly estimated
|
| - Y2.fill(10.f * X.re[0] * X.re[0]);
|
| - for (size_t k = 0; k < 100000; ++k) {
|
| + Y2.fill(10.f * 10000.f * 10000.f);
|
| + for (size_t k = 0; k < 1000; ++k) {
|
| state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
|
| - X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
|
| - false);
|
| + render_buffer, E2_main, Y2, x[0], false);
|
| }
|
|
|
| ASSERT_TRUE(state.UsableLinearEstimate());
|
| const std::array<float, kFftLengthBy2Plus1>& erl = state.Erl();
|
| - std::for_each(erl.begin(), erl.end(),
|
| - [](float a) { EXPECT_NEAR(10.f, a, 0.1); });
|
| + EXPECT_EQ(erl[0], erl[1]);
|
| + for (size_t k = 1; k < erl.size() - 1; ++k) {
|
| + EXPECT_NEAR(k % 2 == 0 ? 10.f : 1000.f, erl[k], 0.1);
|
| + }
|
| + EXPECT_EQ(erl[erl.size() - 2], erl[erl.size() - 1]);
|
|
|
| // Verify that the ERLE is properly estimated
|
| - E2_main.fill(1.f * X.re[0] * X.re[0]);
|
| + E2_main.fill(1.f * 10000.f * 10000.f);
|
| Y2.fill(10.f * E2_main[0]);
|
| - for (size_t k = 0; k < 10000; ++k) {
|
| + for (size_t k = 0; k < 1000; ++k) {
|
| state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
|
| - X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
|
| - false);
|
| + render_buffer, E2_main, Y2, x[0], false);
|
| }
|
| ASSERT_TRUE(state.UsableLinearEstimate());
|
| - std::for_each(state.Erle().begin(), state.Erle().end(),
|
| - [](float a) { EXPECT_NEAR(8.f, a, 0.1); });
|
| + {
|
| + const auto& erle = state.Erle();
|
| + EXPECT_EQ(erle[0], erle[1]);
|
| + for (size_t k = 1; k < erle.size() - 1; ++k) {
|
| + EXPECT_NEAR(k % 2 == 0 ? 8.f : 1.f, erle[k], 0.1);
|
| + }
|
| + EXPECT_EQ(erle[erle.size() - 2], erle[erle.size() - 1]);
|
| + }
|
|
|
| - E2_main.fill(1.f * X.re[0] * X.re[0]);
|
| + E2_main.fill(1.f * 10000.f * 10000.f);
|
| Y2.fill(5.f * E2_main[0]);
|
| - for (size_t k = 0; k < 10000; ++k) {
|
| + for (size_t k = 0; k < 1000; ++k) {
|
| state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
|
| - X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
|
| - false);
|
| + render_buffer, E2_main, Y2, x[0], false);
|
| }
|
| +
|
| ASSERT_TRUE(state.UsableLinearEstimate());
|
| - std::for_each(state.Erle().begin(), state.Erle().end(),
|
| - [](float a) { EXPECT_NEAR(5.f, a, 0.1); });
|
| + {
|
| + const auto& erle = state.Erle();
|
| + EXPECT_EQ(erle[0], erle[1]);
|
| + for (size_t k = 1; k < erle.size() - 1; ++k) {
|
| + EXPECT_NEAR(k % 2 == 0 ? 5.f : 1.f, erle[k], 0.1);
|
| + }
|
| + EXPECT_EQ(erle[erle.size() - 2], erle[erle.size() - 1]);
|
| + }
|
| }
|
|
|
| // Verifies the a non-significant delay is correctly identified.
|
| TEST(AecState, NonSignificantDelay) {
|
| AecState state;
|
| - FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30));
|
| + RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 30,
|
| + std::vector<size_t>(1, 30));
|
| std::array<float, kFftLengthBy2Plus1> E2_main;
|
| - std::array<float, kFftLengthBy2Plus1> E2_shadow;
|
| std::array<float, kFftLengthBy2Plus1> Y2;
|
| std::array<float, kBlockSize> x;
|
| EchoPathVariability echo_path_variability(false, false);
|
| @@ -208,8 +155,9 @@ TEST(AecState, NonSignificantDelay) {
|
| }
|
|
|
| // Verify that a non-significant filter delay is identified correctly.
|
| - state.Update(frequency_response, rtc::Optional<size_t>(), X_buffer, E2_main,
|
| - E2_shadow, Y2, x, echo_path_variability, false);
|
| + state.HandleEchoPathChange(echo_path_variability);
|
| + state.Update(frequency_response, rtc::Optional<size_t>(), render_buffer,
|
| + E2_main, Y2, x, false);
|
| EXPECT_FALSE(state.FilterDelay());
|
| }
|
|
|
| @@ -217,9 +165,9 @@ TEST(AecState, NonSignificantDelay) {
|
| TEST(AecState, ConvergedFilterDelay) {
|
| constexpr int kFilterLength = 10;
|
| AecState state;
|
| - FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30));
|
| + RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 30,
|
| + std::vector<size_t>(1, 30));
|
| std::array<float, kFftLengthBy2Plus1> E2_main;
|
| - std::array<float, kFftLengthBy2Plus1> E2_shadow;
|
| std::array<float, kFftLengthBy2Plus1> Y2;
|
| std::array<float, kBlockSize> x;
|
| EchoPathVariability echo_path_variability(false, false);
|
| @@ -234,9 +182,10 @@ TEST(AecState, ConvergedFilterDelay) {
|
| v.fill(0.01f);
|
| }
|
| frequency_response[k].fill(100.f);
|
| -
|
| - state.Update(frequency_response, rtc::Optional<size_t>(), X_buffer, E2_main,
|
| - E2_shadow, Y2, x, echo_path_variability, false);
|
| + frequency_response[k][0] = 0.f;
|
| + state.HandleEchoPathChange(echo_path_variability);
|
| + state.Update(frequency_response, rtc::Optional<size_t>(), render_buffer,
|
| + E2_main, Y2, x, false);
|
| EXPECT_TRUE(k == (kFilterLength - 1) || state.FilterDelay());
|
| if (k != (kFilterLength - 1)) {
|
| EXPECT_EQ(k, state.FilterDelay());
|
| @@ -255,27 +204,27 @@ TEST(AecState, ExternalDelay) {
|
| E2_shadow.fill(0.f);
|
| Y2.fill(0.f);
|
| x.fill(0.f);
|
| - FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30));
|
| + RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 30,
|
| + std::vector<size_t>(1, 30));
|
| std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(30);
|
| for (auto& v : frequency_response) {
|
| v.fill(0.01f);
|
| }
|
|
|
| for (size_t k = 0; k < frequency_response.size() - 1; ++k) {
|
| + state.HandleEchoPathChange(EchoPathVariability(false, false));
|
| state.Update(frequency_response, rtc::Optional<size_t>(k * kBlockSize + 5),
|
| - X_buffer, E2_main, E2_shadow, Y2, x,
|
| - EchoPathVariability(false, false), false);
|
| + render_buffer, E2_main, Y2, x, false);
|
| EXPECT_TRUE(state.ExternalDelay());
|
| EXPECT_EQ(k, state.ExternalDelay());
|
| }
|
|
|
| // Verify that the externally reported delay is properly unset when it is no
|
| // longer present.
|
| - state.Update(frequency_response, rtc::Optional<size_t>(), X_buffer, E2_main,
|
| - E2_shadow, Y2, x, EchoPathVariability(false, false), false);
|
| + state.HandleEchoPathChange(EchoPathVariability(false, false));
|
| + state.Update(frequency_response, rtc::Optional<size_t>(), render_buffer,
|
| + E2_main, Y2, x, false);
|
| EXPECT_FALSE(state.ExternalDelay());
|
| }
|
|
|
| } // namespace webrtc
|
| -
|
| -#endif
|
|
|