Index: webrtc/modules/audio_processing/aec3/aec_state_unittest.cc |
diff --git a/webrtc/modules/audio_processing/aec3/aec_state_unittest.cc b/webrtc/modules/audio_processing/aec3/aec_state_unittest.cc |
index 312d451946d3d8264861a40549a566da7f45ddef..71d62c9fbec2af9832dfb44299e94eb5cef083d1 100644 |
--- a/webrtc/modules/audio_processing/aec3/aec_state_unittest.cc |
+++ b/webrtc/modules/audio_processing/aec3/aec_state_unittest.cc |
@@ -10,9 +10,6 @@ |
#include "webrtc/modules/audio_processing/aec3/aec_state.h" |
-// TODO(peah): Reactivate once the next CL has landed. |
-#if 0 |
- |
#include "webrtc/modules/audio_processing/logging/apm_data_dumper.h" |
#include "webrtc/test/gtest.h" |
@@ -22,13 +19,12 @@ namespace webrtc { |
TEST(AecState, NormalUsage) { |
ApmDataDumper data_dumper(42); |
AecState state; |
- FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30)); |
+ RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 30, |
+ std::vector<size_t>(1, 30)); |
std::array<float, kFftLengthBy2Plus1> E2_main; |
- std::array<float, kFftLengthBy2Plus1> E2_shadow; |
std::array<float, kFftLengthBy2Plus1> Y2; |
- std::array<float, kBlockSize> x; |
+ std::vector<std::vector<float>> x(3, std::vector<float>(kBlockSize, 0.f)); |
EchoPathVariability echo_path_variability(false, false); |
- x.fill(0.f); |
std::vector<std::array<float, kFftLengthBy2Plus1>> |
converged_filter_frequency_response(10); |
@@ -38,165 +34,116 @@ TEST(AecState, NormalUsage) { |
std::vector<std::array<float, kFftLengthBy2Plus1>> |
diverged_filter_frequency_response = converged_filter_frequency_response; |
converged_filter_frequency_response[2].fill(100.f); |
+ converged_filter_frequency_response[2][0] = 1.f; |
- // Verify that model based aec feasibility and linear AEC usability are false |
- // when the filter is diverged and there is no external delay reported. |
+ // Verify that linear AEC usability is false when the filter is diverged and |
+ // there is no external delay reported. |
state.Update(diverged_filter_frequency_response, rtc::Optional<size_t>(), |
- X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
- false); |
- EXPECT_FALSE(state.ModelBasedAecFeasible()); |
- EXPECT_FALSE(state.UsableLinearEstimate()); |
- |
- // Verify that model based aec feasibility is true and that linear AEC |
- // usability is false when the filter is diverged and there is an external |
- // delay reported. |
- state.Update(diverged_filter_frequency_response, rtc::Optional<size_t>(), |
- X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
- false); |
- EXPECT_FALSE(state.ModelBasedAecFeasible()); |
- for (int k = 0; k < 50; ++k) { |
- state.Update(diverged_filter_frequency_response, rtc::Optional<size_t>(2), |
- X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
- false); |
- } |
- EXPECT_TRUE(state.ModelBasedAecFeasible()); |
+ render_buffer, E2_main, Y2, x[0], false); |
EXPECT_FALSE(state.UsableLinearEstimate()); |
// Verify that linear AEC usability is true when the filter is converged |
- for (int k = 0; k < 50; ++k) { |
+ std::fill(x[0].begin(), x[0].end(), 101.f); |
+ for (int k = 0; k < 3000; ++k) { |
state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
- X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
- false); |
+ render_buffer, E2_main, Y2, x[0], false); |
} |
EXPECT_TRUE(state.UsableLinearEstimate()); |
// Verify that linear AEC usability becomes false after an echo path change is |
// reported |
- echo_path_variability = EchoPathVariability(true, false); |
+ state.HandleEchoPathChange(EchoPathVariability(true, false)); |
state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
- X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
- false); |
+ render_buffer, E2_main, Y2, x[0], false); |
EXPECT_FALSE(state.UsableLinearEstimate()); |
// Verify that the active render detection works as intended. |
- x.fill(101.f); |
+ std::fill(x[0].begin(), x[0].end(), 101.f); |
+ state.HandleEchoPathChange(EchoPathVariability(true, true)); |
state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
- X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
- false); |
- EXPECT_TRUE(state.ActiveRender()); |
+ render_buffer, E2_main, Y2, x[0], false); |
+ EXPECT_FALSE(state.ActiveRender()); |
- x.fill(0.f); |
- for (int k = 0; k < 200; ++k) { |
+ for (int k = 0; k < 1000; ++k) { |
state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
- X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
- false); |
+ render_buffer, E2_main, Y2, x[0], false); |
} |
- EXPECT_FALSE(state.ActiveRender()); |
- |
- x.fill(101.f); |
- state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
- X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
- false); |
EXPECT_TRUE(state.ActiveRender()); |
// Verify that echo leakage is properly reported. |
state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
- X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
- false); |
+ render_buffer, E2_main, Y2, x[0], false); |
EXPECT_FALSE(state.EchoLeakageDetected()); |
state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
- X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
- true); |
+ render_buffer, E2_main, Y2, x[0], true); |
EXPECT_TRUE(state.EchoLeakageDetected()); |
- // Verify that the bands containing reliable filter estimates are properly |
- // reported. |
- echo_path_variability = EchoPathVariability(false, false); |
- for (int k = 0; k < 200; ++k) { |
- state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
- X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
- false); |
- } |
- |
- FftData X; |
- X.re.fill(10000.f); |
- X.im.fill(0.f); |
- for (size_t k = 0; k < X_buffer.Buffer().size(); ++k) { |
- X_buffer.Insert(X); |
- } |
- |
- Y2.fill(10.f * 1000.f * 1000.f); |
- E2_main.fill(100.f * Y2[0]); |
- E2_shadow.fill(100.f * Y2[0]); |
- state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
- X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
- false); |
- |
- E2_main.fill(0.1f * Y2[0]); |
- E2_shadow.fill(E2_main[0]); |
- for (size_t k = 0; k < Y2.size(); k += 2) { |
- E2_main[k] = Y2[k]; |
- E2_shadow[k] = Y2[k]; |
+ // Verify that the ERL is properly estimated |
+ for (auto& x_k : x) { |
+ x_k = std::vector<float>(kBlockSize, 0.f); |
} |
- state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
- X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
- false); |
- const std::array<bool, kFftLengthBy2Plus1>& reliable_bands = |
- state.BandsWithReliableFilter(); |
- |
- EXPECT_EQ(reliable_bands[0], reliable_bands[1]); |
- for (size_t k = 1; k < kFftLengthBy2 - 5; ++k) { |
- EXPECT_TRUE(reliable_bands[k]); |
- } |
- for (size_t k = kFftLengthBy2 - 5; k < reliable_bands.size(); ++k) { |
- EXPECT_EQ(reliable_bands[kFftLengthBy2 - 6], reliable_bands[k]); |
+ x[0][0] = 5000.f; |
+ for (size_t k = 0; k < render_buffer.Buffer().size(); ++k) { |
+ render_buffer.Insert(x); |
} |
- // Verify that the ERL is properly estimated |
- Y2.fill(10.f * X.re[0] * X.re[0]); |
- for (size_t k = 0; k < 100000; ++k) { |
+ Y2.fill(10.f * 10000.f * 10000.f); |
+ for (size_t k = 0; k < 1000; ++k) { |
state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
- X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
- false); |
+ render_buffer, E2_main, Y2, x[0], false); |
} |
ASSERT_TRUE(state.UsableLinearEstimate()); |
const std::array<float, kFftLengthBy2Plus1>& erl = state.Erl(); |
- std::for_each(erl.begin(), erl.end(), |
- [](float a) { EXPECT_NEAR(10.f, a, 0.1); }); |
+ EXPECT_EQ(erl[0], erl[1]); |
+ for (size_t k = 1; k < erl.size() - 1; ++k) { |
+ EXPECT_NEAR(k % 2 == 0 ? 10.f : 1000.f, erl[k], 0.1); |
+ } |
+ EXPECT_EQ(erl[erl.size() - 2], erl[erl.size() - 1]); |
// Verify that the ERLE is properly estimated |
- E2_main.fill(1.f * X.re[0] * X.re[0]); |
+ E2_main.fill(1.f * 10000.f * 10000.f); |
Y2.fill(10.f * E2_main[0]); |
- for (size_t k = 0; k < 10000; ++k) { |
+ for (size_t k = 0; k < 1000; ++k) { |
state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
- X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
- false); |
+ render_buffer, E2_main, Y2, x[0], false); |
} |
ASSERT_TRUE(state.UsableLinearEstimate()); |
- std::for_each(state.Erle().begin(), state.Erle().end(), |
- [](float a) { EXPECT_NEAR(8.f, a, 0.1); }); |
+ { |
+ const auto& erle = state.Erle(); |
+ EXPECT_EQ(erle[0], erle[1]); |
+ for (size_t k = 1; k < erle.size() - 1; ++k) { |
+ EXPECT_NEAR(k % 2 == 0 ? 8.f : 1.f, erle[k], 0.1); |
+ } |
+ EXPECT_EQ(erle[erle.size() - 2], erle[erle.size() - 1]); |
+ } |
- E2_main.fill(1.f * X.re[0] * X.re[0]); |
+ E2_main.fill(1.f * 10000.f * 10000.f); |
Y2.fill(5.f * E2_main[0]); |
- for (size_t k = 0; k < 10000; ++k) { |
+ for (size_t k = 0; k < 1000; ++k) { |
state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
- X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
- false); |
+ render_buffer, E2_main, Y2, x[0], false); |
} |
+ |
ASSERT_TRUE(state.UsableLinearEstimate()); |
- std::for_each(state.Erle().begin(), state.Erle().end(), |
- [](float a) { EXPECT_NEAR(5.f, a, 0.1); }); |
+ { |
+ const auto& erle = state.Erle(); |
+ EXPECT_EQ(erle[0], erle[1]); |
+ for (size_t k = 1; k < erle.size() - 1; ++k) { |
+ EXPECT_NEAR(k % 2 == 0 ? 5.f : 1.f, erle[k], 0.1); |
+ } |
+ EXPECT_EQ(erle[erle.size() - 2], erle[erle.size() - 1]); |
+ } |
} |
// Verifies the a non-significant delay is correctly identified. |
TEST(AecState, NonSignificantDelay) { |
AecState state; |
- FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30)); |
+ RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 30, |
+ std::vector<size_t>(1, 30)); |
std::array<float, kFftLengthBy2Plus1> E2_main; |
- std::array<float, kFftLengthBy2Plus1> E2_shadow; |
std::array<float, kFftLengthBy2Plus1> Y2; |
std::array<float, kBlockSize> x; |
EchoPathVariability echo_path_variability(false, false); |
@@ -208,8 +155,9 @@ TEST(AecState, NonSignificantDelay) { |
} |
// Verify that a non-significant filter delay is identified correctly. |
- state.Update(frequency_response, rtc::Optional<size_t>(), X_buffer, E2_main, |
- E2_shadow, Y2, x, echo_path_variability, false); |
+ state.HandleEchoPathChange(echo_path_variability); |
+ state.Update(frequency_response, rtc::Optional<size_t>(), render_buffer, |
+ E2_main, Y2, x, false); |
EXPECT_FALSE(state.FilterDelay()); |
} |
@@ -217,9 +165,9 @@ TEST(AecState, NonSignificantDelay) { |
TEST(AecState, ConvergedFilterDelay) { |
constexpr int kFilterLength = 10; |
AecState state; |
- FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30)); |
+ RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 30, |
+ std::vector<size_t>(1, 30)); |
std::array<float, kFftLengthBy2Plus1> E2_main; |
- std::array<float, kFftLengthBy2Plus1> E2_shadow; |
std::array<float, kFftLengthBy2Plus1> Y2; |
std::array<float, kBlockSize> x; |
EchoPathVariability echo_path_variability(false, false); |
@@ -234,9 +182,10 @@ TEST(AecState, ConvergedFilterDelay) { |
v.fill(0.01f); |
} |
frequency_response[k].fill(100.f); |
- |
- state.Update(frequency_response, rtc::Optional<size_t>(), X_buffer, E2_main, |
- E2_shadow, Y2, x, echo_path_variability, false); |
+ frequency_response[k][0] = 0.f; |
+ state.HandleEchoPathChange(echo_path_variability); |
+ state.Update(frequency_response, rtc::Optional<size_t>(), render_buffer, |
+ E2_main, Y2, x, false); |
EXPECT_TRUE(k == (kFilterLength - 1) || state.FilterDelay()); |
if (k != (kFilterLength - 1)) { |
EXPECT_EQ(k, state.FilterDelay()); |
@@ -255,27 +204,27 @@ TEST(AecState, ExternalDelay) { |
E2_shadow.fill(0.f); |
Y2.fill(0.f); |
x.fill(0.f); |
- FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30)); |
+ RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 30, |
+ std::vector<size_t>(1, 30)); |
std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(30); |
for (auto& v : frequency_response) { |
v.fill(0.01f); |
} |
for (size_t k = 0; k < frequency_response.size() - 1; ++k) { |
+ state.HandleEchoPathChange(EchoPathVariability(false, false)); |
state.Update(frequency_response, rtc::Optional<size_t>(k * kBlockSize + 5), |
- X_buffer, E2_main, E2_shadow, Y2, x, |
- EchoPathVariability(false, false), false); |
+ render_buffer, E2_main, Y2, x, false); |
EXPECT_TRUE(state.ExternalDelay()); |
EXPECT_EQ(k, state.ExternalDelay()); |
} |
// Verify that the externally reported delay is properly unset when it is no |
// longer present. |
- state.Update(frequency_response, rtc::Optional<size_t>(), X_buffer, E2_main, |
- E2_shadow, Y2, x, EchoPathVariability(false, false), false); |
+ state.HandleEchoPathChange(EchoPathVariability(false, false)); |
+ state.Update(frequency_response, rtc::Optional<size_t>(), render_buffer, |
+ E2_main, Y2, x, false); |
EXPECT_FALSE(state.ExternalDelay()); |
} |
} // namespace webrtc |
- |
-#endif |