Chromium Code Reviews| Index: webrtc/modules/audio_processing/aec3/residual_echo_estimator.cc |
| diff --git a/webrtc/modules/audio_processing/aec3/residual_echo_estimator.cc b/webrtc/modules/audio_processing/aec3/residual_echo_estimator.cc |
| index 993a8da8bdef3d7a080a6c5b3433f04280fc2c96..fd848d30af756bfbacb13dce5ec687060256e9eb 100644 |
| --- a/webrtc/modules/audio_processing/aec3/residual_echo_estimator.cc |
| +++ b/webrtc/modules/audio_processing/aec3/residual_echo_estimator.cc |
| @@ -10,7 +10,7 @@ |
| #include "webrtc/modules/audio_processing/aec3/residual_echo_estimator.h" |
| -#include <math.h> |
| +#include <numeric> |
| #include <vector> |
| #include "webrtc/base/checks.h" |
| @@ -18,143 +18,75 @@ |
| namespace webrtc { |
| namespace { |
| -constexpr float kSaturationLeakageFactor = 10.f; |
| -constexpr size_t kSaturationLeakageBlocks = 10; |
| -constexpr size_t kEchoPathChangeConvergenceBlocks = 3 * 250; |
| - |
| -// Estimates the residual echo power when there is no detection correlation |
| -// between the render and capture signals. |
| -void InfiniteErlPowerEstimate( |
| - size_t active_render_blocks, |
| - size_t blocks_since_last_saturation, |
| - const std::array<float, kFftLengthBy2Plus1>& S2_fallback, |
| - std::array<float, kFftLengthBy2Plus1>* R2) { |
| - if (active_render_blocks > 20 * 250) { |
| - // After an amount of active render samples for which an echo should have |
| - // been detected in the capture signal if the ERL was not infinite, set the |
| - // residual echo to 0. |
| - R2->fill(0.f); |
| - } else { |
| - // Before certainty has been reached about the presence of echo, use the |
| - // fallback echo power estimate as the residual echo estimate. Add a leakage |
| - // factor when there is saturation. |
| - std::copy(S2_fallback.begin(), S2_fallback.end(), R2->begin()); |
| - if (blocks_since_last_saturation < kSaturationLeakageBlocks) { |
| - std::for_each(R2->begin(), R2->end(), |
| - [](float& a) { a *= kSaturationLeakageFactor; }); |
| - } |
| +// Estimates the echo generating signal power as gated maximal power over a time |
| +// window. |
| +void EchoGeneratingPower(const RenderBuffer& render_buffer, |
| + size_t min_delay, |
| + size_t max_delay, |
| + std::array<float, kFftLengthBy2Plus1>* X2) { |
| + X2->fill(0.f); |
| + for (size_t k = min_delay; k <= max_delay; ++k) { |
| + std::transform(X2->begin(), X2->end(), render_buffer.Spectrum(k).begin(), |
| + X2->begin(), |
| + [](float a, float b) { return std::max(a, b); }); |
| } |
| -} |
| -// Estimates the echo power in an half-duplex manner. |
| -void HalfDuplexPowerEstimate(bool active_render, |
| - const std::array<float, kFftLengthBy2Plus1>& Y2, |
| - std::array<float, kFftLengthBy2Plus1>* R2) { |
| - // Set the residual echo power to the power of the capture signal. |
| - if (active_render) { |
| - std::copy(Y2.begin(), Y2.end(), R2->begin()); |
| - } else { |
| - R2->fill(0.f); |
| - } |
| -} |
| - |
| -// Estimates the residual echo power based on gains. |
| -void GainBasedPowerEstimate( |
| - size_t external_delay, |
| - const RenderBuffer& X_buffer, |
| - size_t blocks_since_last_saturation, |
| - size_t active_render_blocks, |
| - const std::array<bool, kFftLengthBy2Plus1>& bands_with_reliable_filter, |
| - const std::array<float, kFftLengthBy2Plus1>& echo_path_gain, |
| - const std::array<float, kFftLengthBy2Plus1>& S2_fallback, |
| - std::array<float, kFftLengthBy2Plus1>* R2) { |
| - const auto& X2 = X_buffer.Spectrum(external_delay); |
| - |
| - // Base the residual echo power on gain of the linear echo path estimate if |
| - // that is reliable, otherwise use the fallback echo path estimate. Add a |
| - // leakage factor when there is saturation. |
| - if (active_render_blocks > kEchoPathChangeConvergenceBlocks) { |
| - for (size_t k = 0; k < R2->size(); ++k) { |
| - (*R2)[k] = bands_with_reliable_filter[k] ? echo_path_gain[k] * X2[k] |
| - : S2_fallback[k]; |
| + // Apply soft noise gate of -78 dBFS. |
| + constexpr float kNoiseGatePower = 27509.42f; |
| + std::for_each(X2->begin(), X2->end(), [kNoiseGatePower](float& a) { |
| + if (kNoiseGatePower > a) { |
| + a = std::max(0.f, a - 0.3f * (kNoiseGatePower - a)); |
|
ivoc
2017/04/05 15:21:25
So this is equal to 1.3*a - 0.3*kNoiseGatePower, r
peah-webrtc
2017/04/06 07:20:32
Yes, but writing it like that is a bit misleading
|
| } |
| - } else { |
| - for (size_t k = 0; k < R2->size(); ++k) { |
| - (*R2)[k] = S2_fallback[k]; |
| - } |
| - } |
| - |
| - if (blocks_since_last_saturation < kSaturationLeakageBlocks) { |
| - std::for_each(R2->begin(), R2->end(), |
| - [](float& a) { a *= kSaturationLeakageFactor; }); |
| - } |
| + }); |
| } |
| -// Estimates the residual echo power based on the linear echo path. |
| -void ErleBasedPowerEstimate( |
| - bool headset_detected, |
| - const RenderBuffer& X_buffer, |
| - bool using_subtractor_output, |
| - size_t linear_filter_based_delay, |
| - size_t blocks_since_last_saturation, |
| - bool poorly_aligned_filter, |
| - const std::array<bool, kFftLengthBy2Plus1>& bands_with_reliable_filter, |
| - const std::array<float, kFftLengthBy2Plus1>& echo_path_gain, |
| - const std::array<float, kFftLengthBy2Plus1>& S2_fallback, |
| +// Estimates the residual echo power based on the erle and the linear power |
| +// estimate. |
| +void LinearResidualPowerEstimate( |
| const std::array<float, kFftLengthBy2Plus1>& S2_linear, |
| - const std::array<float, kFftLengthBy2Plus1>& Y2, |
| const std::array<float, kFftLengthBy2Plus1>& erle, |
| - const std::array<float, kFftLengthBy2Plus1>& erl, |
| + std::array<int, kFftLengthBy2Plus1>* R2_hold_counter, |
| std::array<float, kFftLengthBy2Plus1>* R2) { |
| - // Residual echo power after saturation. |
| - if (blocks_since_last_saturation < kSaturationLeakageBlocks) { |
| - for (size_t k = 0; k < R2->size(); ++k) { |
| - (*R2)[k] = kSaturationLeakageFactor * |
| - (bands_with_reliable_filter[k] && using_subtractor_output |
| - ? S2_linear[k] |
| - : std::min(S2_fallback[k], Y2[k])); |
| - } |
| - return; |
| - } |
| - |
| - // Residual echo power when a headset is used. |
| - if (headset_detected) { |
| - const auto& X2 = X_buffer.Spectrum(linear_filter_based_delay); |
| - for (size_t k = 0; k < R2->size(); ++k) { |
| - RTC_DCHECK_LT(0.f, erle[k]); |
| - (*R2)[k] = bands_with_reliable_filter[k] && using_subtractor_output |
| - ? S2_linear[k] / erle[k] |
| - : std::min(S2_fallback[k], Y2[k]); |
| - (*R2)[k] = std::min((*R2)[k], X2[k] * erl[k]); |
| - } |
| - return; |
| - } |
| + std::fill(R2_hold_counter->begin(), R2_hold_counter->end(), 10.f); |
| + std::transform(erle.begin(), erle.end(), S2_linear.begin(), R2->begin(), |
| + [](float a, float b) { |
| + RTC_DCHECK_LT(0.f, a); |
| + return b / a; |
| + }); |
| +} |
| - // Residual echo power when the adaptive filter is poorly aligned. |
| - if (poorly_aligned_filter) { |
| - for (size_t k = 0; k < R2->size(); ++k) { |
| - (*R2)[k] = bands_with_reliable_filter[k] && using_subtractor_output |
| - ? S2_linear[k] |
| - : std::min(S2_fallback[k], Y2[k]); |
| - } |
| - return; |
| - } |
| +// Estimates the residual echo power based on the estimate of the echo path |
| +// gain. |
| +void NonLinearResidualPowerEstimate( |
| + const std::array<float, kFftLengthBy2Plus1>& X2, |
| + const std::array<float, kFftLengthBy2Plus1>& Y2, |
| + const std::array<float, kFftLengthBy2Plus1>& R2_old, |
| + std::array<int, kFftLengthBy2Plus1>* R2_hold_counter, |
| + std::array<float, kFftLengthBy2Plus1>* R2) { |
| + // Compute preliminary residual echo. |
| + // TODO(peah): Try to make this adaptive. Currently the gain is hardcoded to |
| + // 20 dB. |
| + std::transform(X2.begin(), X2.end(), R2->begin(), |
| + [](float a) { return a * kFixedEchoPathGain; }); |
| - // Residual echo power when there is no recent saturation, no headset detected |
| - // and when the adaptive filter is well aligned. |
| for (size_t k = 0; k < R2->size(); ++k) { |
| - RTC_DCHECK_LT(0.f, erle[k]); |
| - const auto& X2 = X_buffer.Spectrum(linear_filter_based_delay); |
| - (*R2)[k] = bands_with_reliable_filter[k] && using_subtractor_output |
| - ? S2_linear[k] / erle[k] |
| - : std::min(echo_path_gain[k] * X2[k], Y2[k]); |
| + // Update hold counter. |
| + (*R2_hold_counter)[k] = |
| + R2_old[k] < (*R2)[k] ? 0 : (*R2_hold_counter)[k] + 1; |
| + |
| + // Compute the residual echo by holding a maximum echo powers and an echo |
| + // fading corresponding to a room with an RT60 value of about 50 ms. |
| + (*R2)[k] = (*R2_hold_counter)[k] < 2 |
| + ? std::max((*R2)[k], R2_old[k]) |
| + : std::min((*R2)[k] + R2_old[k] * 0.1f, Y2[k]); |
| } |
| } |
| } // namespace |
| ResidualEchoEstimator::ResidualEchoEstimator() { |
| - echo_path_gain_.fill(100.f); |
| + R2_old_.fill(0.f); |
| + R2_hold_counter_.fill(0); |
| } |
| ResidualEchoEstimator::~ResidualEchoEstimator() = default; |
| @@ -162,71 +94,53 @@ ResidualEchoEstimator::~ResidualEchoEstimator() = default; |
| void ResidualEchoEstimator::Estimate( |
| bool using_subtractor_output, |
| const AecState& aec_state, |
| - const RenderBuffer& X_buffer, |
| - const std::vector<std::array<float, kFftLengthBy2Plus1>>& H2, |
| - const std::array<float, kFftLengthBy2Plus1>& E2_main, |
| - const std::array<float, kFftLengthBy2Plus1>& E2_shadow, |
| + const RenderBuffer& render_buffer, |
| const std::array<float, kFftLengthBy2Plus1>& S2_linear, |
| - const std::array<float, kFftLengthBy2Plus1>& S2_fallback, |
| const std::array<float, kFftLengthBy2Plus1>& Y2, |
| std::array<float, kFftLengthBy2Plus1>* R2) { |
| RTC_DCHECK(R2); |
| - const rtc::Optional<size_t>& linear_filter_based_delay = |
| - aec_state.FilterDelay(); |
| - |
| - // Update the echo path gain. |
| - if (linear_filter_based_delay) { |
| - std::copy(H2[*linear_filter_based_delay].begin(), |
| - H2[*linear_filter_based_delay].end(), echo_path_gain_.begin()); |
| - constexpr float kEchoPathGainHeadroom = 10.f; |
| - std::for_each( |
| - echo_path_gain_.begin(), echo_path_gain_.end(), |
| - [kEchoPathGainHeadroom](float& a) { a *= kEchoPathGainHeadroom; }); |
| + |
| + // Return zero residual echo power when a headset is detected. |
| + if (aec_state.HeadsetDetected()) { |
| + R2->fill(0.f); |
| + R2_old_.fill(0.f); |
| + R2_hold_counter_.fill(0.f); |
| + return; |
| } |
| - // Counts the blocks since saturation. |
| - if (aec_state.SaturatedCapture()) { |
| - blocks_since_last_saturation_ = 0; |
| + // Estimate the echo generating signal power. |
| + std::array<float, kFftLengthBy2Plus1> X2; |
| + if (aec_state.ExternalDelay() || aec_state.FilterDelay()) { |
| + const int delay = |
| + static_cast<int>(aec_state.FilterDelay() ? *aec_state.FilterDelay() |
| + : *aec_state.ExternalDelay()); |
| + // Computes the spectral power over that blocks surrounding the delauy.. |
| + EchoGeneratingPower( |
| + render_buffer, std::max(0, delay - 1), |
| + std::min(kResidualEchoPowerRenderWindowSize - 1, delay + 1), &X2); |
| } else { |
| - ++blocks_since_last_saturation_; |
| + // Computes the spectral power over that last 30 blocks. |
| + EchoGeneratingPower(render_buffer, 0, |
| + kResidualEchoPowerRenderWindowSize - 1, &X2); |
| } |
| - const auto& bands_with_reliable_filter = aec_state.BandsWithReliableFilter(); |
| - |
| - if (aec_state.UsableLinearEstimate()) { |
| - // Residual echo power estimation when the adaptive filter is reliable. |
| - RTC_DCHECK(linear_filter_based_delay); |
| - ErleBasedPowerEstimate( |
| - aec_state.HeadsetDetected(), X_buffer, using_subtractor_output, |
| - *linear_filter_based_delay, blocks_since_last_saturation_, |
| - aec_state.PoorlyAlignedFilter(), bands_with_reliable_filter, |
| - echo_path_gain_, S2_fallback, S2_linear, Y2, aec_state.Erle(), |
| - aec_state.Erl(), R2); |
| - } else if (aec_state.ModelBasedAecFeasible()) { |
| - // Residual echo power when the adaptive filter is not reliable but still an |
| - // external echo path delay is provided (and hence can be estimated). |
| - RTC_DCHECK(aec_state.ExternalDelay()); |
| - GainBasedPowerEstimate( |
| - *aec_state.ExternalDelay(), X_buffer, blocks_since_last_saturation_, |
| - aec_state.ActiveRenderBlocks(), bands_with_reliable_filter, |
| - echo_path_gain_, S2_fallback, R2); |
| - } else if (aec_state.EchoLeakageDetected()) { |
| - // Residual echo power when an external residual echo detection algorithm |
| - // has deemed the echo canceller to leak echoes. |
| - HalfDuplexPowerEstimate(aec_state.ActiveRender(), Y2, R2); |
| + // Estimate the residual echo power. |
| + if ((aec_state.UsableLinearEstimate() && using_subtractor_output)) { |
| + LinearResidualPowerEstimate(S2_linear, aec_state.Erle(), &R2_hold_counter_, |
| + R2); |
| } else { |
| - // Residual echo power when none of the other cases are fulfilled. |
| - InfiniteErlPowerEstimate(aec_state.ActiveRenderBlocks(), |
| - blocks_since_last_saturation_, S2_fallback, R2); |
| + NonLinearResidualPowerEstimate(X2, Y2, R2_old_, &R2_hold_counter_, R2); |
| } |
| -} |
| -void ResidualEchoEstimator::HandleEchoPathChange( |
| - const EchoPathVariability& echo_path_variability) { |
| - if (echo_path_variability.AudioPathChanged()) { |
| - blocks_since_last_saturation_ = 0; |
| - echo_path_gain_.fill(100.f); |
| + // If the echo is saturated, estimate the echo power as the maximum echo power |
| + // with a leakage factor. |
| + if (aec_state.SaturatedEcho()) { |
| + constexpr float kSaturationLeakageFactor = 100.f; |
| + R2->fill((*std::max_element(R2->begin(), R2->end())) * |
| + kSaturationLeakageFactor); |
| } |
| + |
| + std::copy(R2->begin(), R2->end(), R2_old_.begin()); |
| } |
| } // namespace webrtc |