| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. | 2 * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
| 5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
| 6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
| 7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
| 8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
| 9 */ | 9 */ |
| 10 | 10 |
| 11 #include "webrtc/modules/audio_processing/aec3/aec_state.h" | 11 #include "webrtc/modules/audio_processing/aec3/aec_state.h" |
| 12 | 12 |
| 13 // TODO(peah): Reactivate once the next CL has landed. | |
| 14 #if 0 | |
| 15 | |
| 16 #include "webrtc/modules/audio_processing/logging/apm_data_dumper.h" | 13 #include "webrtc/modules/audio_processing/logging/apm_data_dumper.h" |
| 17 #include "webrtc/test/gtest.h" | 14 #include "webrtc/test/gtest.h" |
| 18 | 15 |
| 19 namespace webrtc { | 16 namespace webrtc { |
| 20 | 17 |
| 21 // Verify the general functionality of AecState | 18 // Verify the general functionality of AecState |
| 22 TEST(AecState, NormalUsage) { | 19 TEST(AecState, NormalUsage) { |
| 23 ApmDataDumper data_dumper(42); | 20 ApmDataDumper data_dumper(42); |
| 24 AecState state; | 21 AecState state; |
| 25 FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30)); | 22 RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 30, |
| 26 std::array<float, kFftLengthBy2Plus1> E2_main; | 23 std::vector<size_t>(1, 30)); |
| 27 std::array<float, kFftLengthBy2Plus1> E2_shadow; | 24 std::array<float, kFftLengthBy2Plus1> E2_main = {}; |
| 28 std::array<float, kFftLengthBy2Plus1> Y2; | 25 std::array<float, kFftLengthBy2Plus1> Y2 = {}; |
| 29 std::array<float, kBlockSize> x; | 26 std::vector<std::vector<float>> x(3, std::vector<float>(kBlockSize, 0.f)); |
| 30 EchoPathVariability echo_path_variability(false, false); | 27 EchoPathVariability echo_path_variability(false, false); |
| 31 x.fill(0.f); | |
| 32 | 28 |
| 33 std::vector<std::array<float, kFftLengthBy2Plus1>> | 29 std::vector<std::array<float, kFftLengthBy2Plus1>> |
| 34 converged_filter_frequency_response(10); | 30 converged_filter_frequency_response(10); |
| 35 for (auto& v : converged_filter_frequency_response) { | 31 for (auto& v : converged_filter_frequency_response) { |
| 36 v.fill(0.01f); | 32 v.fill(0.01f); |
| 37 } | 33 } |
| 38 std::vector<std::array<float, kFftLengthBy2Plus1>> | 34 std::vector<std::array<float, kFftLengthBy2Plus1>> |
| 39 diverged_filter_frequency_response = converged_filter_frequency_response; | 35 diverged_filter_frequency_response = converged_filter_frequency_response; |
| 40 converged_filter_frequency_response[2].fill(100.f); | 36 converged_filter_frequency_response[2].fill(100.f); |
| 37 converged_filter_frequency_response[2][0] = 1.f; |
| 41 | 38 |
| 42 // Verify that model based aec feasibility and linear AEC usability are false | 39 // Verify that linear AEC usability is false when the filter is diverged and |
| 43 // when the filter is diverged and there is no external delay reported. | 40 // there is no external delay reported. |
| 44 state.Update(diverged_filter_frequency_response, rtc::Optional<size_t>(), | 41 state.Update(diverged_filter_frequency_response, rtc::Optional<size_t>(), |
| 45 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, | 42 render_buffer, E2_main, Y2, x[0], false); |
| 46 false); | |
| 47 EXPECT_FALSE(state.ModelBasedAecFeasible()); | |
| 48 EXPECT_FALSE(state.UsableLinearEstimate()); | |
| 49 | |
| 50 // Verify that model based aec feasibility is true and that linear AEC | |
| 51 // usability is false when the filter is diverged and there is an external | |
| 52 // delay reported. | |
| 53 state.Update(diverged_filter_frequency_response, rtc::Optional<size_t>(), | |
| 54 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, | |
| 55 false); | |
| 56 EXPECT_FALSE(state.ModelBasedAecFeasible()); | |
| 57 for (int k = 0; k < 50; ++k) { | |
| 58 state.Update(diverged_filter_frequency_response, rtc::Optional<size_t>(2), | |
| 59 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, | |
| 60 false); | |
| 61 } | |
| 62 EXPECT_TRUE(state.ModelBasedAecFeasible()); | |
| 63 EXPECT_FALSE(state.UsableLinearEstimate()); | 43 EXPECT_FALSE(state.UsableLinearEstimate()); |
| 64 | 44 |
| 65 // Verify that linear AEC usability is true when the filter is converged | 45 // Verify that linear AEC usability is true when the filter is converged |
| 66 for (int k = 0; k < 50; ++k) { | 46 std::fill(x[0].begin(), x[0].end(), 101.f); |
| 47 for (int k = 0; k < 3000; ++k) { |
| 67 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), | 48 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
| 68 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, | 49 render_buffer, E2_main, Y2, x[0], false); |
| 69 false); | |
| 70 } | 50 } |
| 71 EXPECT_TRUE(state.UsableLinearEstimate()); | 51 EXPECT_TRUE(state.UsableLinearEstimate()); |
| 72 | 52 |
| 73 // Verify that linear AEC usability becomes false after an echo path change is | 53 // Verify that linear AEC usability becomes false after an echo path change is |
| 74 // reported | 54 // reported |
| 75 echo_path_variability = EchoPathVariability(true, false); | 55 state.HandleEchoPathChange(EchoPathVariability(true, false)); |
| 76 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), | 56 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
| 77 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, | 57 render_buffer, E2_main, Y2, x[0], false); |
| 78 false); | |
| 79 EXPECT_FALSE(state.UsableLinearEstimate()); | 58 EXPECT_FALSE(state.UsableLinearEstimate()); |
| 80 | 59 |
| 81 // Verify that the active render detection works as intended. | 60 // Verify that the active render detection works as intended. |
| 82 x.fill(101.f); | 61 std::fill(x[0].begin(), x[0].end(), 101.f); |
| 62 state.HandleEchoPathChange(EchoPathVariability(true, true)); |
| 83 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), | 63 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
| 84 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, | 64 render_buffer, E2_main, Y2, x[0], false); |
| 85 false); | |
| 86 EXPECT_TRUE(state.ActiveRender()); | |
| 87 | |
| 88 x.fill(0.f); | |
| 89 for (int k = 0; k < 200; ++k) { | |
| 90 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), | |
| 91 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, | |
| 92 false); | |
| 93 } | |
| 94 EXPECT_FALSE(state.ActiveRender()); | 65 EXPECT_FALSE(state.ActiveRender()); |
| 95 | 66 |
| 96 x.fill(101.f); | 67 for (int k = 0; k < 1000; ++k) { |
| 97 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), | 68 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
| 98 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, | 69 render_buffer, E2_main, Y2, x[0], false); |
| 99 false); | 70 } |
| 100 EXPECT_TRUE(state.ActiveRender()); | 71 EXPECT_TRUE(state.ActiveRender()); |
| 101 | 72 |
| 102 // Verify that echo leakage is properly reported. | 73 // Verify that echo leakage is properly reported. |
| 103 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), | 74 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
| 104 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, | 75 render_buffer, E2_main, Y2, x[0], false); |
| 105 false); | |
| 106 EXPECT_FALSE(state.EchoLeakageDetected()); | 76 EXPECT_FALSE(state.EchoLeakageDetected()); |
| 107 | 77 |
| 108 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), | 78 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
| 109 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, | 79 render_buffer, E2_main, Y2, x[0], true); |
| 110 true); | |
| 111 EXPECT_TRUE(state.EchoLeakageDetected()); | 80 EXPECT_TRUE(state.EchoLeakageDetected()); |
| 112 | 81 |
| 113 // Verify that the bands containing reliable filter estimates are properly | 82 // Verify that the ERL is properly estimated |
| 114 // reported. | 83 for (auto& x_k : x) { |
| 115 echo_path_variability = EchoPathVariability(false, false); | 84 x_k = std::vector<float>(kBlockSize, 0.f); |
| 116 for (int k = 0; k < 200; ++k) { | |
| 117 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), | |
| 118 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, | |
| 119 false); | |
| 120 } | 85 } |
| 121 | 86 |
| 122 FftData X; | 87 x[0][0] = 5000.f; |
| 123 X.re.fill(10000.f); | 88 for (size_t k = 0; k < render_buffer.Buffer().size(); ++k) { |
| 124 X.im.fill(0.f); | 89 render_buffer.Insert(x); |
| 125 for (size_t k = 0; k < X_buffer.Buffer().size(); ++k) { | |
| 126 X_buffer.Insert(X); | |
| 127 } | 90 } |
| 128 | 91 |
| 129 Y2.fill(10.f * 1000.f * 1000.f); | 92 Y2.fill(10.f * 10000.f * 10000.f); |
| 130 E2_main.fill(100.f * Y2[0]); | 93 for (size_t k = 0; k < 1000; ++k) { |
| 131 E2_shadow.fill(100.f * Y2[0]); | |
| 132 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), | |
| 133 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, | |
| 134 false); | |
| 135 | |
| 136 E2_main.fill(0.1f * Y2[0]); | |
| 137 E2_shadow.fill(E2_main[0]); | |
| 138 for (size_t k = 0; k < Y2.size(); k += 2) { | |
| 139 E2_main[k] = Y2[k]; | |
| 140 E2_shadow[k] = Y2[k]; | |
| 141 } | |
| 142 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), | |
| 143 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, | |
| 144 false); | |
| 145 | |
| 146 const std::array<bool, kFftLengthBy2Plus1>& reliable_bands = | |
| 147 state.BandsWithReliableFilter(); | |
| 148 | |
| 149 EXPECT_EQ(reliable_bands[0], reliable_bands[1]); | |
| 150 for (size_t k = 1; k < kFftLengthBy2 - 5; ++k) { | |
| 151 EXPECT_TRUE(reliable_bands[k]); | |
| 152 } | |
| 153 for (size_t k = kFftLengthBy2 - 5; k < reliable_bands.size(); ++k) { | |
| 154 EXPECT_EQ(reliable_bands[kFftLengthBy2 - 6], reliable_bands[k]); | |
| 155 } | |
| 156 | |
| 157 // Verify that the ERL is properly estimated | |
| 158 Y2.fill(10.f * X.re[0] * X.re[0]); | |
| 159 for (size_t k = 0; k < 100000; ++k) { | |
| 160 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), | 94 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
| 161 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, | 95 render_buffer, E2_main, Y2, x[0], false); |
| 162 false); | |
| 163 } | 96 } |
| 164 | 97 |
| 165 ASSERT_TRUE(state.UsableLinearEstimate()); | 98 ASSERT_TRUE(state.UsableLinearEstimate()); |
| 166 const std::array<float, kFftLengthBy2Plus1>& erl = state.Erl(); | 99 const std::array<float, kFftLengthBy2Plus1>& erl = state.Erl(); |
| 167 std::for_each(erl.begin(), erl.end(), | 100 EXPECT_EQ(erl[0], erl[1]); |
| 168 [](float a) { EXPECT_NEAR(10.f, a, 0.1); }); | 101 for (size_t k = 1; k < erl.size() - 1; ++k) { |
| 102 EXPECT_NEAR(k % 2 == 0 ? 10.f : 1000.f, erl[k], 0.1); |
| 103 } |
| 104 EXPECT_EQ(erl[erl.size() - 2], erl[erl.size() - 1]); |
| 169 | 105 |
| 170 // Verify that the ERLE is properly estimated | 106 // Verify that the ERLE is properly estimated |
| 171 E2_main.fill(1.f * X.re[0] * X.re[0]); | 107 E2_main.fill(1.f * 10000.f * 10000.f); |
| 172 Y2.fill(10.f * E2_main[0]); | 108 Y2.fill(10.f * E2_main[0]); |
| 173 for (size_t k = 0; k < 10000; ++k) { | 109 for (size_t k = 0; k < 1000; ++k) { |
| 174 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), | 110 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
| 175 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, | 111 render_buffer, E2_main, Y2, x[0], false); |
| 176 false); | |
| 177 } | 112 } |
| 178 ASSERT_TRUE(state.UsableLinearEstimate()); | 113 ASSERT_TRUE(state.UsableLinearEstimate()); |
| 179 std::for_each(state.Erle().begin(), state.Erle().end(), | 114 { |
| 180 [](float a) { EXPECT_NEAR(8.f, a, 0.1); }); | 115 const auto& erle = state.Erle(); |
| 116 EXPECT_EQ(erle[0], erle[1]); |
| 117 for (size_t k = 1; k < erle.size() - 1; ++k) { |
| 118 EXPECT_NEAR(k % 2 == 0 ? 8.f : 1.f, erle[k], 0.1); |
| 119 } |
| 120 EXPECT_EQ(erle[erle.size() - 2], erle[erle.size() - 1]); |
| 121 } |
| 181 | 122 |
| 182 E2_main.fill(1.f * X.re[0] * X.re[0]); | 123 E2_main.fill(1.f * 10000.f * 10000.f); |
| 183 Y2.fill(5.f * E2_main[0]); | 124 Y2.fill(5.f * E2_main[0]); |
| 184 for (size_t k = 0; k < 10000; ++k) { | 125 for (size_t k = 0; k < 1000; ++k) { |
| 185 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), | 126 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
| 186 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, | 127 render_buffer, E2_main, Y2, x[0], false); |
| 187 false); | |
| 188 } | 128 } |
| 129 |
| 189 ASSERT_TRUE(state.UsableLinearEstimate()); | 130 ASSERT_TRUE(state.UsableLinearEstimate()); |
| 190 std::for_each(state.Erle().begin(), state.Erle().end(), | 131 { |
| 191 [](float a) { EXPECT_NEAR(5.f, a, 0.1); }); | 132 const auto& erle = state.Erle(); |
| 133 EXPECT_EQ(erle[0], erle[1]); |
| 134 for (size_t k = 1; k < erle.size() - 1; ++k) { |
| 135 EXPECT_NEAR(k % 2 == 0 ? 5.f : 1.f, erle[k], 0.1); |
| 136 } |
| 137 EXPECT_EQ(erle[erle.size() - 2], erle[erle.size() - 1]); |
| 138 } |
| 192 } | 139 } |
| 193 | 140 |
| 194 // Verifies the a non-significant delay is correctly identified. | 141 // Verifies the a non-significant delay is correctly identified. |
| 195 TEST(AecState, NonSignificantDelay) { | 142 TEST(AecState, NonSignificantDelay) { |
| 196 AecState state; | 143 AecState state; |
| 197 FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30)); | 144 RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 30, |
| 145 std::vector<size_t>(1, 30)); |
| 198 std::array<float, kFftLengthBy2Plus1> E2_main; | 146 std::array<float, kFftLengthBy2Plus1> E2_main; |
| 199 std::array<float, kFftLengthBy2Plus1> E2_shadow; | |
| 200 std::array<float, kFftLengthBy2Plus1> Y2; | 147 std::array<float, kFftLengthBy2Plus1> Y2; |
| 201 std::array<float, kBlockSize> x; | 148 std::array<float, kBlockSize> x; |
| 202 EchoPathVariability echo_path_variability(false, false); | 149 EchoPathVariability echo_path_variability(false, false); |
| 203 x.fill(0.f); | 150 x.fill(0.f); |
| 204 | 151 |
| 205 std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(30); | 152 std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(30); |
| 206 for (auto& v : frequency_response) { | 153 for (auto& v : frequency_response) { |
| 207 v.fill(0.01f); | 154 v.fill(0.01f); |
| 208 } | 155 } |
| 209 | 156 |
| 210 // Verify that a non-significant filter delay is identified correctly. | 157 // Verify that a non-significant filter delay is identified correctly. |
| 211 state.Update(frequency_response, rtc::Optional<size_t>(), X_buffer, E2_main, | 158 state.HandleEchoPathChange(echo_path_variability); |
| 212 E2_shadow, Y2, x, echo_path_variability, false); | 159 state.Update(frequency_response, rtc::Optional<size_t>(), render_buffer, |
| 160 E2_main, Y2, x, false); |
| 213 EXPECT_FALSE(state.FilterDelay()); | 161 EXPECT_FALSE(state.FilterDelay()); |
| 214 } | 162 } |
| 215 | 163 |
| 216 // Verifies the delay for a converged filter is correctly identified. | 164 // Verifies the delay for a converged filter is correctly identified. |
| 217 TEST(AecState, ConvergedFilterDelay) { | 165 TEST(AecState, ConvergedFilterDelay) { |
| 218 constexpr int kFilterLength = 10; | 166 constexpr int kFilterLength = 10; |
| 219 AecState state; | 167 AecState state; |
| 220 FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30)); | 168 RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 30, |
| 169 std::vector<size_t>(1, 30)); |
| 221 std::array<float, kFftLengthBy2Plus1> E2_main; | 170 std::array<float, kFftLengthBy2Plus1> E2_main; |
| 222 std::array<float, kFftLengthBy2Plus1> E2_shadow; | |
| 223 std::array<float, kFftLengthBy2Plus1> Y2; | 171 std::array<float, kFftLengthBy2Plus1> Y2; |
| 224 std::array<float, kBlockSize> x; | 172 std::array<float, kBlockSize> x; |
| 225 EchoPathVariability echo_path_variability(false, false); | 173 EchoPathVariability echo_path_variability(false, false); |
| 226 x.fill(0.f); | 174 x.fill(0.f); |
| 227 | 175 |
| 228 std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response( | 176 std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response( |
| 229 kFilterLength); | 177 kFilterLength); |
| 230 | 178 |
| 231 // Verify that the filter delay for a converged filter is properly identified. | 179 // Verify that the filter delay for a converged filter is properly identified. |
| 232 for (int k = 0; k < kFilterLength; ++k) { | 180 for (int k = 0; k < kFilterLength; ++k) { |
| 233 for (auto& v : frequency_response) { | 181 for (auto& v : frequency_response) { |
| 234 v.fill(0.01f); | 182 v.fill(0.01f); |
| 235 } | 183 } |
| 236 frequency_response[k].fill(100.f); | 184 frequency_response[k].fill(100.f); |
| 237 | 185 frequency_response[k][0] = 0.f; |
| 238 state.Update(frequency_response, rtc::Optional<size_t>(), X_buffer, E2_main, | 186 state.HandleEchoPathChange(echo_path_variability); |
| 239 E2_shadow, Y2, x, echo_path_variability, false); | 187 state.Update(frequency_response, rtc::Optional<size_t>(), render_buffer, |
| 188 E2_main, Y2, x, false); |
| 240 EXPECT_TRUE(k == (kFilterLength - 1) || state.FilterDelay()); | 189 EXPECT_TRUE(k == (kFilterLength - 1) || state.FilterDelay()); |
| 241 if (k != (kFilterLength - 1)) { | 190 if (k != (kFilterLength - 1)) { |
| 242 EXPECT_EQ(k, state.FilterDelay()); | 191 EXPECT_EQ(k, state.FilterDelay()); |
| 243 } | 192 } |
| 244 } | 193 } |
| 245 } | 194 } |
| 246 | 195 |
| 247 // Verify that the externally reported delay is properly reported and converted. | 196 // Verify that the externally reported delay is properly reported and converted. |
| 248 TEST(AecState, ExternalDelay) { | 197 TEST(AecState, ExternalDelay) { |
| 249 AecState state; | 198 AecState state; |
| 250 std::array<float, kFftLengthBy2Plus1> E2_main; | 199 std::array<float, kFftLengthBy2Plus1> E2_main; |
| 251 std::array<float, kFftLengthBy2Plus1> E2_shadow; | 200 std::array<float, kFftLengthBy2Plus1> E2_shadow; |
| 252 std::array<float, kFftLengthBy2Plus1> Y2; | 201 std::array<float, kFftLengthBy2Plus1> Y2; |
| 253 std::array<float, kBlockSize> x; | 202 std::array<float, kBlockSize> x; |
| 254 E2_main.fill(0.f); | 203 E2_main.fill(0.f); |
| 255 E2_shadow.fill(0.f); | 204 E2_shadow.fill(0.f); |
| 256 Y2.fill(0.f); | 205 Y2.fill(0.f); |
| 257 x.fill(0.f); | 206 x.fill(0.f); |
| 258 FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30)); | 207 RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 30, |
| 208 std::vector<size_t>(1, 30)); |
| 259 std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(30); | 209 std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(30); |
| 260 for (auto& v : frequency_response) { | 210 for (auto& v : frequency_response) { |
| 261 v.fill(0.01f); | 211 v.fill(0.01f); |
| 262 } | 212 } |
| 263 | 213 |
| 264 for (size_t k = 0; k < frequency_response.size() - 1; ++k) { | 214 for (size_t k = 0; k < frequency_response.size() - 1; ++k) { |
| 215 state.HandleEchoPathChange(EchoPathVariability(false, false)); |
| 265 state.Update(frequency_response, rtc::Optional<size_t>(k * kBlockSize + 5), | 216 state.Update(frequency_response, rtc::Optional<size_t>(k * kBlockSize + 5), |
| 266 X_buffer, E2_main, E2_shadow, Y2, x, | 217 render_buffer, E2_main, Y2, x, false); |
| 267 EchoPathVariability(false, false), false); | |
| 268 EXPECT_TRUE(state.ExternalDelay()); | 218 EXPECT_TRUE(state.ExternalDelay()); |
| 269 EXPECT_EQ(k, state.ExternalDelay()); | 219 EXPECT_EQ(k, state.ExternalDelay()); |
| 270 } | 220 } |
| 271 | 221 |
| 272 // Verify that the externally reported delay is properly unset when it is no | 222 // Verify that the externally reported delay is properly unset when it is no |
| 273 // longer present. | 223 // longer present. |
| 274 state.Update(frequency_response, rtc::Optional<size_t>(), X_buffer, E2_main, | 224 state.HandleEchoPathChange(EchoPathVariability(false, false)); |
| 275 E2_shadow, Y2, x, EchoPathVariability(false, false), false); | 225 state.Update(frequency_response, rtc::Optional<size_t>(), render_buffer, |
| 226 E2_main, Y2, x, false); |
| 276 EXPECT_FALSE(state.ExternalDelay()); | 227 EXPECT_FALSE(state.ExternalDelay()); |
| 277 } | 228 } |
| 278 | 229 |
| 279 } // namespace webrtc | 230 } // namespace webrtc |
| 280 | |
| 281 #endif | |
| OLD | NEW |