OLD | NEW |
1 /* | 1 /* |
2 * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. | 2 * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
9 */ | 9 */ |
10 | 10 |
11 #include "webrtc/modules/audio_processing/aec3/aec_state.h" | 11 #include "webrtc/modules/audio_processing/aec3/aec_state.h" |
12 | 12 |
13 // TODO(peah): Reactivate once the next CL has landed. | |
14 #if 0 | |
15 | |
16 #include "webrtc/modules/audio_processing/logging/apm_data_dumper.h" | 13 #include "webrtc/modules/audio_processing/logging/apm_data_dumper.h" |
17 #include "webrtc/test/gtest.h" | 14 #include "webrtc/test/gtest.h" |
18 | 15 |
19 namespace webrtc { | 16 namespace webrtc { |
20 | 17 |
21 // Verify the general functionality of AecState | 18 // Verify the general functionality of AecState |
22 TEST(AecState, NormalUsage) { | 19 TEST(AecState, NormalUsage) { |
23 ApmDataDumper data_dumper(42); | 20 ApmDataDumper data_dumper(42); |
24 AecState state; | 21 AecState state; |
25 FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30)); | 22 RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 30, |
| 23 std::vector<size_t>(1, 30)); |
26 std::array<float, kFftLengthBy2Plus1> E2_main; | 24 std::array<float, kFftLengthBy2Plus1> E2_main; |
27 std::array<float, kFftLengthBy2Plus1> E2_shadow; | |
28 std::array<float, kFftLengthBy2Plus1> Y2; | 25 std::array<float, kFftLengthBy2Plus1> Y2; |
29 std::array<float, kBlockSize> x; | 26 std::vector<std::vector<float>> x(3, std::vector<float>(kBlockSize, 0.f)); |
30 EchoPathVariability echo_path_variability(false, false); | 27 EchoPathVariability echo_path_variability(false, false); |
31 x.fill(0.f); | |
32 | 28 |
33 std::vector<std::array<float, kFftLengthBy2Plus1>> | 29 std::vector<std::array<float, kFftLengthBy2Plus1>> |
34 converged_filter_frequency_response(10); | 30 converged_filter_frequency_response(10); |
35 for (auto& v : converged_filter_frequency_response) { | 31 for (auto& v : converged_filter_frequency_response) { |
36 v.fill(0.01f); | 32 v.fill(0.01f); |
37 } | 33 } |
38 std::vector<std::array<float, kFftLengthBy2Plus1>> | 34 std::vector<std::array<float, kFftLengthBy2Plus1>> |
39 diverged_filter_frequency_response = converged_filter_frequency_response; | 35 diverged_filter_frequency_response = converged_filter_frequency_response; |
40 converged_filter_frequency_response[2].fill(100.f); | 36 converged_filter_frequency_response[2].fill(100.f); |
| 37 converged_filter_frequency_response[2][0] = 1.f; |
41 | 38 |
42 // Verify that model based aec feasibility and linear AEC usability are false | 39 // Verify that linear AEC usability is false when the filter is diverged and |
43 // when the filter is diverged and there is no external delay reported. | 40 // there is no external delay reported. |
44 state.Update(diverged_filter_frequency_response, rtc::Optional<size_t>(), | 41 state.Update(diverged_filter_frequency_response, rtc::Optional<size_t>(), |
45 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, | 42 render_buffer, E2_main, Y2, x[0], false); |
46 false); | |
47 EXPECT_FALSE(state.ModelBasedAecFeasible()); | |
48 EXPECT_FALSE(state.UsableLinearEstimate()); | |
49 | |
50 // Verify that model based aec feasibility is true and that linear AEC | |
51 // usability is false when the filter is diverged and there is an external | |
52 // delay reported. | |
53 state.Update(diverged_filter_frequency_response, rtc::Optional<size_t>(), | |
54 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, | |
55 false); | |
56 EXPECT_FALSE(state.ModelBasedAecFeasible()); | |
57 for (int k = 0; k < 50; ++k) { | |
58 state.Update(diverged_filter_frequency_response, rtc::Optional<size_t>(2), | |
59 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, | |
60 false); | |
61 } | |
62 EXPECT_TRUE(state.ModelBasedAecFeasible()); | |
63 EXPECT_FALSE(state.UsableLinearEstimate()); | 43 EXPECT_FALSE(state.UsableLinearEstimate()); |
64 | 44 |
65 // Verify that linear AEC usability is true when the filter is converged | 45 // Verify that linear AEC usability is true when the filter is converged |
66 for (int k = 0; k < 50; ++k) { | 46 std::fill(x[0].begin(), x[0].end(), 101.f); |
| 47 for (int k = 0; k < 3000; ++k) { |
67 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), | 48 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
68 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, | 49 render_buffer, E2_main, Y2, x[0], false); |
69 false); | |
70 } | 50 } |
71 EXPECT_TRUE(state.UsableLinearEstimate()); | 51 EXPECT_TRUE(state.UsableLinearEstimate()); |
72 | 52 |
73 // Verify that linear AEC usability becomes false after an echo path change is | 53 // Verify that linear AEC usability becomes false after an echo path change is |
74 // reported | 54 // reported |
75 echo_path_variability = EchoPathVariability(true, false); | 55 state.HandleEchoPathChange(EchoPathVariability(true, false)); |
76 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), | 56 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
77 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, | 57 render_buffer, E2_main, Y2, x[0], false); |
78 false); | |
79 EXPECT_FALSE(state.UsableLinearEstimate()); | 58 EXPECT_FALSE(state.UsableLinearEstimate()); |
80 | 59 |
81 // Verify that the active render detection works as intended. | 60 // Verify that the active render detection works as intended. |
82 x.fill(101.f); | 61 std::fill(x[0].begin(), x[0].end(), 101.f); |
| 62 state.HandleEchoPathChange(EchoPathVariability(true, true)); |
83 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), | 63 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
84 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, | 64 render_buffer, E2_main, Y2, x[0], false); |
85 false); | |
86 EXPECT_TRUE(state.ActiveRender()); | |
87 | |
88 x.fill(0.f); | |
89 for (int k = 0; k < 200; ++k) { | |
90 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), | |
91 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, | |
92 false); | |
93 } | |
94 EXPECT_FALSE(state.ActiveRender()); | 65 EXPECT_FALSE(state.ActiveRender()); |
95 | 66 |
96 x.fill(101.f); | 67 for (int k = 0; k < 1000; ++k) { |
97 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), | 68 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
98 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, | 69 render_buffer, E2_main, Y2, x[0], false); |
99 false); | 70 } |
100 EXPECT_TRUE(state.ActiveRender()); | 71 EXPECT_TRUE(state.ActiveRender()); |
101 | 72 |
102 // Verify that echo leakage is properly reported. | 73 // Verify that echo leakage is properly reported. |
103 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), | 74 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
104 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, | 75 render_buffer, E2_main, Y2, x[0], false); |
105 false); | |
106 EXPECT_FALSE(state.EchoLeakageDetected()); | 76 EXPECT_FALSE(state.EchoLeakageDetected()); |
107 | 77 |
108 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), | 78 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
109 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, | 79 render_buffer, E2_main, Y2, x[0], true); |
110 true); | |
111 EXPECT_TRUE(state.EchoLeakageDetected()); | 80 EXPECT_TRUE(state.EchoLeakageDetected()); |
112 | 81 |
113 // Verify that the bands containing reliable filter estimates are properly | 82 // Verify that the ERL is properly estimated |
114 // reported. | 83 for (auto& x_k : x) { |
115 echo_path_variability = EchoPathVariability(false, false); | 84 x_k = std::vector<float>(kBlockSize, 0.f); |
116 for (int k = 0; k < 200; ++k) { | |
117 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), | |
118 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, | |
119 false); | |
120 } | 85 } |
121 | 86 |
122 FftData X; | 87 x[0][0] = 5000.f; |
123 X.re.fill(10000.f); | 88 for (size_t k = 0; k < render_buffer.Buffer().size(); ++k) { |
124 X.im.fill(0.f); | 89 render_buffer.Insert(x); |
125 for (size_t k = 0; k < X_buffer.Buffer().size(); ++k) { | |
126 X_buffer.Insert(X); | |
127 } | 90 } |
128 | 91 |
129 Y2.fill(10.f * 1000.f * 1000.f); | 92 Y2.fill(10.f * 10000.f * 10000.f); |
130 E2_main.fill(100.f * Y2[0]); | 93 for (size_t k = 0; k < 1000; ++k) { |
131 E2_shadow.fill(100.f * Y2[0]); | |
132 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), | |
133 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, | |
134 false); | |
135 | |
136 E2_main.fill(0.1f * Y2[0]); | |
137 E2_shadow.fill(E2_main[0]); | |
138 for (size_t k = 0; k < Y2.size(); k += 2) { | |
139 E2_main[k] = Y2[k]; | |
140 E2_shadow[k] = Y2[k]; | |
141 } | |
142 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), | |
143 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, | |
144 false); | |
145 | |
146 const std::array<bool, kFftLengthBy2Plus1>& reliable_bands = | |
147 state.BandsWithReliableFilter(); | |
148 | |
149 EXPECT_EQ(reliable_bands[0], reliable_bands[1]); | |
150 for (size_t k = 1; k < kFftLengthBy2 - 5; ++k) { | |
151 EXPECT_TRUE(reliable_bands[k]); | |
152 } | |
153 for (size_t k = kFftLengthBy2 - 5; k < reliable_bands.size(); ++k) { | |
154 EXPECT_EQ(reliable_bands[kFftLengthBy2 - 6], reliable_bands[k]); | |
155 } | |
156 | |
157 // Verify that the ERL is properly estimated | |
158 Y2.fill(10.f * X.re[0] * X.re[0]); | |
159 for (size_t k = 0; k < 100000; ++k) { | |
160 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), | 94 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
161 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, | 95 render_buffer, E2_main, Y2, x[0], false); |
162 false); | |
163 } | 96 } |
164 | 97 |
165 ASSERT_TRUE(state.UsableLinearEstimate()); | 98 ASSERT_TRUE(state.UsableLinearEstimate()); |
166 const std::array<float, kFftLengthBy2Plus1>& erl = state.Erl(); | 99 const std::array<float, kFftLengthBy2Plus1>& erl = state.Erl(); |
167 std::for_each(erl.begin(), erl.end(), | 100 EXPECT_EQ(erl[0], erl[1]); |
168 [](float a) { EXPECT_NEAR(10.f, a, 0.1); }); | 101 for (size_t k = 1; k < erl.size() - 1; ++k) { |
| 102 EXPECT_NEAR(k % 2 == 0 ? 10.f : 1000.f, erl[k], 0.1); |
| 103 } |
| 104 EXPECT_EQ(erl[erl.size() - 2], erl[erl.size() - 1]); |
169 | 105 |
170 // Verify that the ERLE is properly estimated | 106 // Verify that the ERLE is properly estimated |
171 E2_main.fill(1.f * X.re[0] * X.re[0]); | 107 E2_main.fill(1.f * 10000.f * 10000.f); |
172 Y2.fill(10.f * E2_main[0]); | 108 Y2.fill(10.f * E2_main[0]); |
173 for (size_t k = 0; k < 10000; ++k) { | 109 for (size_t k = 0; k < 1000; ++k) { |
174 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), | 110 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
175 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, | 111 render_buffer, E2_main, Y2, x[0], false); |
176 false); | |
177 } | 112 } |
178 ASSERT_TRUE(state.UsableLinearEstimate()); | 113 ASSERT_TRUE(state.UsableLinearEstimate()); |
179 std::for_each(state.Erle().begin(), state.Erle().end(), | 114 { |
180 [](float a) { EXPECT_NEAR(8.f, a, 0.1); }); | 115 const auto& erle = state.Erle(); |
| 116 EXPECT_EQ(erle[0], erle[1]); |
| 117 for (size_t k = 1; k < erle.size() - 1; ++k) { |
| 118 EXPECT_NEAR(k % 2 == 0 ? 8.f : 1.f, erle[k], 0.1); |
| 119 } |
| 120 EXPECT_EQ(erle[erle.size() - 2], erle[erle.size() - 1]); |
| 121 } |
181 | 122 |
182 E2_main.fill(1.f * X.re[0] * X.re[0]); | 123 E2_main.fill(1.f * 10000.f * 10000.f); |
183 Y2.fill(5.f * E2_main[0]); | 124 Y2.fill(5.f * E2_main[0]); |
184 for (size_t k = 0; k < 10000; ++k) { | 125 for (size_t k = 0; k < 1000; ++k) { |
185 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), | 126 state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
186 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, | 127 render_buffer, E2_main, Y2, x[0], false); |
187 false); | |
188 } | 128 } |
| 129 |
189 ASSERT_TRUE(state.UsableLinearEstimate()); | 130 ASSERT_TRUE(state.UsableLinearEstimate()); |
190 std::for_each(state.Erle().begin(), state.Erle().end(), | 131 { |
191 [](float a) { EXPECT_NEAR(5.f, a, 0.1); }); | 132 const auto& erle = state.Erle(); |
| 133 EXPECT_EQ(erle[0], erle[1]); |
| 134 for (size_t k = 1; k < erle.size() - 1; ++k) { |
| 135 EXPECT_NEAR(k % 2 == 0 ? 5.f : 1.f, erle[k], 0.1); |
| 136 } |
| 137 EXPECT_EQ(erle[erle.size() - 2], erle[erle.size() - 1]); |
| 138 } |
192 } | 139 } |
193 | 140 |
194 // Verifies the a non-significant delay is correctly identified. | 141 // Verifies the a non-significant delay is correctly identified. |
195 TEST(AecState, NonSignificantDelay) { | 142 TEST(AecState, NonSignificantDelay) { |
196 AecState state; | 143 AecState state; |
197 FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30)); | 144 RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 30, |
| 145 std::vector<size_t>(1, 30)); |
198 std::array<float, kFftLengthBy2Plus1> E2_main; | 146 std::array<float, kFftLengthBy2Plus1> E2_main; |
199 std::array<float, kFftLengthBy2Plus1> E2_shadow; | |
200 std::array<float, kFftLengthBy2Plus1> Y2; | 147 std::array<float, kFftLengthBy2Plus1> Y2; |
201 std::array<float, kBlockSize> x; | 148 std::array<float, kBlockSize> x; |
202 EchoPathVariability echo_path_variability(false, false); | 149 EchoPathVariability echo_path_variability(false, false); |
203 x.fill(0.f); | 150 x.fill(0.f); |
204 | 151 |
205 std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(30); | 152 std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(30); |
206 for (auto& v : frequency_response) { | 153 for (auto& v : frequency_response) { |
207 v.fill(0.01f); | 154 v.fill(0.01f); |
208 } | 155 } |
209 | 156 |
210 // Verify that a non-significant filter delay is identified correctly. | 157 // Verify that a non-significant filter delay is identified correctly. |
211 state.Update(frequency_response, rtc::Optional<size_t>(), X_buffer, E2_main, | 158 state.HandleEchoPathChange(echo_path_variability); |
212 E2_shadow, Y2, x, echo_path_variability, false); | 159 state.Update(frequency_response, rtc::Optional<size_t>(), render_buffer, |
| 160 E2_main, Y2, x, false); |
213 EXPECT_FALSE(state.FilterDelay()); | 161 EXPECT_FALSE(state.FilterDelay()); |
214 } | 162 } |
215 | 163 |
216 // Verifies the delay for a converged filter is correctly identified. | 164 // Verifies the delay for a converged filter is correctly identified. |
217 TEST(AecState, ConvergedFilterDelay) { | 165 TEST(AecState, ConvergedFilterDelay) { |
218 constexpr int kFilterLength = 10; | 166 constexpr int kFilterLength = 10; |
219 AecState state; | 167 AecState state; |
220 FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30)); | 168 RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 30, |
| 169 std::vector<size_t>(1, 30)); |
221 std::array<float, kFftLengthBy2Plus1> E2_main; | 170 std::array<float, kFftLengthBy2Plus1> E2_main; |
222 std::array<float, kFftLengthBy2Plus1> E2_shadow; | |
223 std::array<float, kFftLengthBy2Plus1> Y2; | 171 std::array<float, kFftLengthBy2Plus1> Y2; |
224 std::array<float, kBlockSize> x; | 172 std::array<float, kBlockSize> x; |
225 EchoPathVariability echo_path_variability(false, false); | 173 EchoPathVariability echo_path_variability(false, false); |
226 x.fill(0.f); | 174 x.fill(0.f); |
227 | 175 |
228 std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response( | 176 std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response( |
229 kFilterLength); | 177 kFilterLength); |
230 | 178 |
231 // Verify that the filter delay for a converged filter is properly identified. | 179 // Verify that the filter delay for a converged filter is properly identified. |
232 for (int k = 0; k < kFilterLength; ++k) { | 180 for (int k = 0; k < kFilterLength; ++k) { |
233 for (auto& v : frequency_response) { | 181 for (auto& v : frequency_response) { |
234 v.fill(0.01f); | 182 v.fill(0.01f); |
235 } | 183 } |
236 frequency_response[k].fill(100.f); | 184 frequency_response[k].fill(100.f); |
237 | 185 frequency_response[k][0] = 0.f; |
238 state.Update(frequency_response, rtc::Optional<size_t>(), X_buffer, E2_main, | 186 state.HandleEchoPathChange(echo_path_variability); |
239 E2_shadow, Y2, x, echo_path_variability, false); | 187 state.Update(frequency_response, rtc::Optional<size_t>(), render_buffer, |
| 188 E2_main, Y2, x, false); |
240 EXPECT_TRUE(k == (kFilterLength - 1) || state.FilterDelay()); | 189 EXPECT_TRUE(k == (kFilterLength - 1) || state.FilterDelay()); |
241 if (k != (kFilterLength - 1)) { | 190 if (k != (kFilterLength - 1)) { |
242 EXPECT_EQ(k, state.FilterDelay()); | 191 EXPECT_EQ(k, state.FilterDelay()); |
243 } | 192 } |
244 } | 193 } |
245 } | 194 } |
246 | 195 |
247 // Verify that the externally reported delay is properly reported and converted. | 196 // Verify that the externally reported delay is properly reported and converted. |
248 TEST(AecState, ExternalDelay) { | 197 TEST(AecState, ExternalDelay) { |
249 AecState state; | 198 AecState state; |
250 std::array<float, kFftLengthBy2Plus1> E2_main; | 199 std::array<float, kFftLengthBy2Plus1> E2_main; |
251 std::array<float, kFftLengthBy2Plus1> E2_shadow; | 200 std::array<float, kFftLengthBy2Plus1> E2_shadow; |
252 std::array<float, kFftLengthBy2Plus1> Y2; | 201 std::array<float, kFftLengthBy2Plus1> Y2; |
253 std::array<float, kBlockSize> x; | 202 std::array<float, kBlockSize> x; |
254 E2_main.fill(0.f); | 203 E2_main.fill(0.f); |
255 E2_shadow.fill(0.f); | 204 E2_shadow.fill(0.f); |
256 Y2.fill(0.f); | 205 Y2.fill(0.f); |
257 x.fill(0.f); | 206 x.fill(0.f); |
258 FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30)); | 207 RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 30, |
| 208 std::vector<size_t>(1, 30)); |
259 std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(30); | 209 std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(30); |
260 for (auto& v : frequency_response) { | 210 for (auto& v : frequency_response) { |
261 v.fill(0.01f); | 211 v.fill(0.01f); |
262 } | 212 } |
263 | 213 |
264 for (size_t k = 0; k < frequency_response.size() - 1; ++k) { | 214 for (size_t k = 0; k < frequency_response.size() - 1; ++k) { |
| 215 state.HandleEchoPathChange(EchoPathVariability(false, false)); |
265 state.Update(frequency_response, rtc::Optional<size_t>(k * kBlockSize + 5), | 216 state.Update(frequency_response, rtc::Optional<size_t>(k * kBlockSize + 5), |
266 X_buffer, E2_main, E2_shadow, Y2, x, | 217 render_buffer, E2_main, Y2, x, false); |
267 EchoPathVariability(false, false), false); | |
268 EXPECT_TRUE(state.ExternalDelay()); | 218 EXPECT_TRUE(state.ExternalDelay()); |
269 EXPECT_EQ(k, state.ExternalDelay()); | 219 EXPECT_EQ(k, state.ExternalDelay()); |
270 } | 220 } |
271 | 221 |
272 // Verify that the externally reported delay is properly unset when it is no | 222 // Verify that the externally reported delay is properly unset when it is no |
273 // longer present. | 223 // longer present. |
274 state.Update(frequency_response, rtc::Optional<size_t>(), X_buffer, E2_main, | 224 state.HandleEchoPathChange(EchoPathVariability(false, false)); |
275 E2_shadow, Y2, x, EchoPathVariability(false, false), false); | 225 state.Update(frequency_response, rtc::Optional<size_t>(), render_buffer, |
| 226 E2_main, Y2, x, false); |
276 EXPECT_FALSE(state.ExternalDelay()); | 227 EXPECT_FALSE(state.ExternalDelay()); |
277 } | 228 } |
278 | 229 |
279 } // namespace webrtc | 230 } // namespace webrtc |
280 | |
281 #endif | |
OLD | NEW |