| Index: webrtc/base/task_queue_win.cc
|
| diff --git a/webrtc/base/task_queue_win.cc b/webrtc/base/task_queue_win.cc
|
| index 81b1cd1b9f390ce177369602f50638249300b527..11aa81de039258d07d0027137a1fe620ae8df641 100644
|
| --- a/webrtc/base/task_queue_win.cc
|
| +++ b/webrtc/base/task_queue_win.cc
|
| @@ -10,8 +10,12 @@
|
|
|
| #include "webrtc/base/task_queue.h"
|
|
|
| +#include <mmsystem.h>
|
| #include <string.h>
|
|
|
| +#include <algorithm>
|
| +
|
| +#include "webrtc/base/arraysize.h"
|
| #include "webrtc/base/checks.h"
|
| #include "webrtc/base/logging.h"
|
|
|
| @@ -29,7 +33,7 @@ BOOL CALLBACK InitializeTls(PINIT_ONCE init_once, void* param, void** context) {
|
|
|
| DWORD GetQueuePtrTls() {
|
| static INIT_ONCE init_once = INIT_ONCE_STATIC_INIT;
|
| - InitOnceExecuteOnce(&init_once, InitializeTls, nullptr, nullptr);
|
| + ::InitOnceExecuteOnce(&init_once, InitializeTls, nullptr, nullptr);
|
| return g_queue_ptr_tls;
|
| }
|
|
|
| @@ -40,13 +44,107 @@ struct ThreadStartupData {
|
|
|
| void CALLBACK InitializeQueueThread(ULONG_PTR param) {
|
| MSG msg;
|
| - PeekMessage(&msg, NULL, WM_USER, WM_USER, PM_NOREMOVE);
|
| + ::PeekMessage(&msg, nullptr, WM_USER, WM_USER, PM_NOREMOVE);
|
| ThreadStartupData* data = reinterpret_cast<ThreadStartupData*>(param);
|
| - TlsSetValue(GetQueuePtrTls(), data->thread_context);
|
| + ::TlsSetValue(GetQueuePtrTls(), data->thread_context);
|
| data->started->Set();
|
| }
|
| } // namespace
|
|
|
| +class TaskQueue::MultimediaTimer {
|
| + public:
|
| + // kMaxTimers defines the limit of how many MultimediaTimer instances should
|
| + // be created.
|
| + // Background: The maximum number of supported handles for Wait functions, is
|
| + // MAXIMUM_WAIT_OBJECTS - 1 (63).
|
| + // There are some ways to work around the limitation but as it turns out, the
|
| + // limit of concurrently active multimedia timers per process, is much lower,
|
| + // or 16. So there isn't much value in going to the lenghts required to
|
| + // overcome the Wait limitations.
|
| + // kMaxTimers is larger than 16 though since it is possible that 'complete' or
|
| + // signaled timers that haven't been handled, are counted as part of
|
| + // kMaxTimers and thus a multimedia timer can actually be queued even though
|
| + // as far as we're concerned, there are more than 16 that are pending.
|
| + static const int kMaxTimers = MAXIMUM_WAIT_OBJECTS - 1;
|
| +
|
| + // Controls how many MultimediaTimer instances a queue can hold before
|
| + // attempting to garbage collect (GC) timers that aren't in use.
|
| + static const int kInstanceThresholdGC = 8;
|
| +
|
| + MultimediaTimer() : event_(::CreateEvent(nullptr, false, false, nullptr)) {}
|
| +
|
| + MultimediaTimer(MultimediaTimer&& timer)
|
| + : event_(timer.event_),
|
| + timer_id_(timer.timer_id_),
|
| + task_(std::move(timer.task_)) {
|
| + RTC_DCHECK(event_);
|
| + timer.event_ = nullptr;
|
| + timer.timer_id_ = 0;
|
| + }
|
| +
|
| + ~MultimediaTimer() { Close(); }
|
| +
|
| + // Implementing this operator is required because of the way
|
| + // some stl algorithms work, such as std::rotate().
|
| + MultimediaTimer& operator=(MultimediaTimer&& timer) {
|
| + if (this != &timer) {
|
| + Close();
|
| + event_ = timer.event_;
|
| + timer.event_ = nullptr;
|
| + task_ = std::move(timer.task_);
|
| + timer_id_ = timer.timer_id_;
|
| + timer.timer_id_ = 0;
|
| + }
|
| + return *this;
|
| + }
|
| +
|
| + bool StartOneShotTimer(std::unique_ptr<QueuedTask> task, UINT delay_ms) {
|
| + RTC_DCHECK_EQ(0, timer_id_);
|
| + RTC_DCHECK(event_ != nullptr);
|
| + RTC_DCHECK(!task_.get());
|
| + RTC_DCHECK(task.get());
|
| + task_ = std::move(task);
|
| + timer_id_ =
|
| + ::timeSetEvent(delay_ms, 0, reinterpret_cast<LPTIMECALLBACK>(event_), 0,
|
| + TIME_ONESHOT | TIME_CALLBACK_EVENT_SET);
|
| + return timer_id_ != 0;
|
| + }
|
| +
|
| + std::unique_ptr<QueuedTask> Cancel() {
|
| + if (timer_id_) {
|
| + ::timeKillEvent(timer_id_);
|
| + timer_id_ = 0;
|
| + }
|
| + return std::move(task_);
|
| + }
|
| +
|
| + void OnEventSignaled() {
|
| + RTC_DCHECK_NE(0, timer_id_);
|
| + timer_id_ = 0;
|
| + task_->Run() ? task_.reset() : static_cast<void>(task_.release());
|
| + }
|
| +
|
| + HANDLE event() const { return event_; }
|
| +
|
| + bool is_active() const { return timer_id_ != 0; }
|
| +
|
| + private:
|
| + void Close() {
|
| + Cancel();
|
| +
|
| + if (event_) {
|
| + ::CloseHandle(event_);
|
| + event_ = nullptr;
|
| + }
|
| + }
|
| +
|
| + HANDLE event_ = nullptr;
|
| + MMRESULT timer_id_ = 0;
|
| + std::unique_ptr<QueuedTask> task_;
|
| +
|
| + RTC_DISALLOW_COPY_AND_ASSIGN(MultimediaTimer);
|
| +};
|
| +
|
| TaskQueue::TaskQueue(const char* queue_name)
|
| : thread_(&TaskQueue::ThreadMain, this, queue_name) {
|
| RTC_DCHECK(queue_name);
|
| @@ -60,7 +158,7 @@ TaskQueue::TaskQueue(const char* queue_name)
|
|
|
| TaskQueue::~TaskQueue() {
|
| RTC_DCHECK(!IsCurrent());
|
| - while (!PostThreadMessage(thread_.GetThreadRef(), WM_QUIT, 0, 0)) {
|
| + while (!::PostThreadMessage(thread_.GetThreadRef(), WM_QUIT, 0, 0)) {
|
| RTC_CHECK_EQ(ERROR_NOT_ENOUGH_QUOTA, ::GetLastError());
|
| Sleep(1);
|
| }
|
| @@ -69,7 +167,7 @@ TaskQueue::~TaskQueue() {
|
|
|
| // static
|
| TaskQueue* TaskQueue::Current() {
|
| - return static_cast<TaskQueue*>(TlsGetValue(GetQueuePtrTls()));
|
| + return static_cast<TaskQueue*>(::TlsGetValue(GetQueuePtrTls()));
|
| }
|
|
|
| // static
|
| @@ -83,8 +181,8 @@ bool TaskQueue::IsCurrent() const {
|
| }
|
|
|
| void TaskQueue::PostTask(std::unique_ptr<QueuedTask> task) {
|
| - if (PostThreadMessage(thread_.GetThreadRef(), WM_RUN_TASK, 0,
|
| - reinterpret_cast<LPARAM>(task.get()))) {
|
| + if (::PostThreadMessage(thread_.GetThreadRef(), WM_RUN_TASK, 0,
|
| + reinterpret_cast<LPARAM>(task.get()))) {
|
| task.release();
|
| }
|
| }
|
| @@ -100,8 +198,8 @@ void TaskQueue::PostDelayedTask(std::unique_ptr<QueuedTask> task,
|
| #else
|
| wparam = milliseconds;
|
| #endif
|
| - if (PostThreadMessage(thread_.GetThreadRef(), WM_QUEUE_DELAYED_TASK, wparam,
|
| - reinterpret_cast<LPARAM>(task.get()))) {
|
| + if (::PostThreadMessage(thread_.GetThreadRef(), WM_QUEUE_DELAYED_TASK, wparam,
|
| + reinterpret_cast<LPARAM>(task.get()))) {
|
| task.release();
|
| }
|
| }
|
| @@ -117,8 +215,8 @@ void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task,
|
| delete task_ptr;
|
| // If the thread's message queue is full, we can't queue the task and will
|
| // have to drop it (i.e. delete).
|
| - if (!PostThreadMessage(reply_thread_id, WM_RUN_TASK, 0,
|
| - reinterpret_cast<LPARAM>(reply_task_ptr))) {
|
| + if (!::PostThreadMessage(reply_thread_id, WM_RUN_TASK, 0,
|
| + reinterpret_cast<LPARAM>(reply_task_ptr))) {
|
| delete reply_task_ptr;
|
| }
|
| });
|
| @@ -131,25 +229,69 @@ void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task,
|
|
|
| // static
|
| bool TaskQueue::ThreadMain(void* context) {
|
| + HANDLE timer_handles[MultimediaTimer::kMaxTimers];
|
| + // Active multimedia timers.
|
| + std::vector<MultimediaTimer> mm_timers;
|
| + // Tasks that have been queued by using SetTimer/WM_TIMER.
|
| DelayedTasks delayed_tasks;
|
| +
|
| while (true) {
|
| - DWORD result = ::MsgWaitForMultipleObjectsEx(0, nullptr, INFINITE,
|
| + RTC_DCHECK(mm_timers.size() <= arraysize(timer_handles));
|
| + DWORD count = 0;
|
| + for (const auto& t : mm_timers) {
|
| + if (!t.is_active())
|
| + break;
|
| + timer_handles[count++] = t.event();
|
| + }
|
| + // Make sure we do an alertable wait as that's required to allow APCs to run
|
| + // (e.g. required for InitializeQueueThread and stopping the thread in
|
| + // PlatformThread).
|
| + DWORD result = ::MsgWaitForMultipleObjectsEx(count, timer_handles, INFINITE,
|
| QS_ALLEVENTS, MWMO_ALERTABLE);
|
| RTC_CHECK_NE(WAIT_FAILED, result);
|
| - if (result == WAIT_OBJECT_0) {
|
| - if (!ProcessQueuedMessages(&delayed_tasks))
|
| + // If we're not waiting for any timers, then count will be equal to
|
| + // WAIT_OBJECT_0. If we're waiting for timers, then |count| represents
|
| + // "One more than the number of timers", which means that there's a
|
| + // message in the queue that needs to be handled.
|
| + // If |result| is less than |count|, then its value will be the index of the
|
| + // timer that has been signaled.
|
| + if (result == (WAIT_OBJECT_0 + count)) {
|
| + if (!ProcessQueuedMessages(&delayed_tasks, &mm_timers))
|
| break;
|
| + } else if (result < (WAIT_OBJECT_0 + count)) {
|
| + mm_timers[result].OnEventSignaled();
|
| + RTC_DCHECK(!mm_timers[result].is_active());
|
| + // Reuse timer events by moving inactive timers to the back of the vector.
|
| + // When new delayed tasks are queued, they'll get reused.
|
| + if (mm_timers.size() > 1) {
|
| + auto it = mm_timers.begin() + result;
|
| + std::rotate(it, it + 1, mm_timers.end());
|
| + }
|
| +
|
| + // Collect some garbage.
|
| + if (mm_timers.size() > MultimediaTimer::kInstanceThresholdGC) {
|
| + const auto inactive = std::find_if(
|
| + mm_timers.begin(), mm_timers.end(),
|
| + [](const MultimediaTimer& t) { return !t.is_active(); });
|
| + if (inactive != mm_timers.end()) {
|
| + // Since inactive timers are always moved to the back, we can
|
| + // safely delete all timers following the first inactive one.
|
| + mm_timers.erase(inactive, mm_timers.end());
|
| + }
|
| + }
|
| } else {
|
| RTC_DCHECK_EQ(WAIT_IO_COMPLETION, result);
|
| }
|
| }
|
| +
|
| return false;
|
| }
|
|
|
| // static
|
| -bool TaskQueue::ProcessQueuedMessages(DelayedTasks* delayed_tasks) {
|
| +bool TaskQueue::ProcessQueuedMessages(DelayedTasks* delayed_tasks,
|
| + std::vector<MultimediaTimer>* timers) {
|
| MSG msg = {};
|
| - while (PeekMessage(&msg, nullptr, 0, 0, PM_REMOVE) &&
|
| + while (::PeekMessage(&msg, nullptr, 0, 0, PM_REMOVE) &&
|
| msg.message != WM_QUIT) {
|
| if (!msg.hwnd) {
|
| switch (msg.message) {
|
| @@ -160,7 +302,8 @@ bool TaskQueue::ProcessQueuedMessages(DelayedTasks* delayed_tasks) {
|
| break;
|
| }
|
| case WM_QUEUE_DELAYED_TASK: {
|
| - QueuedTask* task = reinterpret_cast<QueuedTask*>(msg.lParam);
|
| + std::unique_ptr<QueuedTask> task(
|
| + reinterpret_cast<QueuedTask*>(msg.lParam));
|
| uint32_t milliseconds = msg.wParam & 0xFFFFFFFF;
|
| #if defined(_WIN64)
|
| // Subtract the time it took to queue the timer.
|
| @@ -169,12 +312,38 @@ bool TaskQueue::ProcessQueuedMessages(DelayedTasks* delayed_tasks) {
|
| milliseconds =
|
| post_time > milliseconds ? 0 : milliseconds - post_time;
|
| #endif
|
| - UINT_PTR timer_id = SetTimer(nullptr, 0, milliseconds, nullptr);
|
| - delayed_tasks->insert(std::make_pair(timer_id, task));
|
| + bool timer_queued = false;
|
| + if (timers->size() < MultimediaTimer::kMaxTimers) {
|
| + MultimediaTimer* timer = nullptr;
|
| + auto available = std::find_if(
|
| + timers->begin(), timers->end(),
|
| + [](const MultimediaTimer& t) { return !t.is_active(); });
|
| + if (available != timers->end()) {
|
| + timer = &(*available);
|
| + } else {
|
| + timers->emplace_back();
|
| + timer = &timers->back();
|
| + }
|
| +
|
| + timer_queued =
|
| + timer->StartOneShotTimer(std::move(task), milliseconds);
|
| + if (!timer_queued) {
|
| + // No more multimedia timers can be queued.
|
| + // Detach the task and fall back on SetTimer.
|
| + task = timer->Cancel();
|
| + }
|
| + }
|
| +
|
| + // When we fail to use multimedia timers, we fall back on the more
|
| + // coarse SetTimer/WM_TIMER approach.
|
| + if (!timer_queued) {
|
| + UINT_PTR timer_id = ::SetTimer(nullptr, 0, milliseconds, nullptr);
|
| + delayed_tasks->insert(std::make_pair(timer_id, task.release()));
|
| + }
|
| break;
|
| }
|
| case WM_TIMER: {
|
| - KillTimer(nullptr, msg.wParam);
|
| + ::KillTimer(nullptr, msg.wParam);
|
| auto found = delayed_tasks->find(msg.wParam);
|
| RTC_DCHECK(found != delayed_tasks->end());
|
| if (!found->second->Run())
|
| @@ -187,8 +356,8 @@ bool TaskQueue::ProcessQueuedMessages(DelayedTasks* delayed_tasks) {
|
| break;
|
| }
|
| } else {
|
| - TranslateMessage(&msg);
|
| - DispatchMessage(&msg);
|
| + ::TranslateMessage(&msg);
|
| + ::DispatchMessage(&msg);
|
| }
|
| }
|
| return msg.message != WM_QUIT;
|
|
|