| Index: webrtc/modules/audio_processing/aec3/suppression_filter.cc
|
| diff --git a/webrtc/modules/audio_processing/aec3/suppression_filter.cc b/webrtc/modules/audio_processing/aec3/suppression_filter.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..037cf9fab813c4206b6dab2b5dbbd8450cd0c4ce
|
| --- /dev/null
|
| +++ b/webrtc/modules/audio_processing/aec3/suppression_filter.cc
|
| @@ -0,0 +1,179 @@
|
| +/*
|
| + * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license
|
| + * that can be found in the LICENSE file in the root of the source
|
| + * tree. An additional intellectual property rights grant can be found
|
| + * in the file PATENTS. All contributing project authors may
|
| + * be found in the AUTHORS file in the root of the source tree.
|
| + */
|
| +
|
| +#include "webrtc/modules/audio_processing/aec3/suppression_filter.h"
|
| +
|
| +#include <math.h>
|
| +#include <algorithm>
|
| +#include <cstring>
|
| +#include <functional>
|
| +#include <numeric>
|
| +
|
| +#include "webrtc/modules/audio_processing/utility/ooura_fft.h"
|
| +
|
| +namespace webrtc {
|
| +namespace {
|
| +
|
| +// Matlab code to produce table:
|
| +// win = sqrt(hanning(63)); win = [0 ; win(1:32)];
|
| +// fprintf(1, '\t%.14f, %.14f, %.14f,\n', win);
|
| +const float kSqrtHanning[kFftLength] = {
|
| + 0.00000000000000f, 0.02454122852291f, 0.04906767432742f, 0.07356456359967f,
|
| + 0.09801714032956f, 0.12241067519922f, 0.14673047445536f, 0.17096188876030f,
|
| + 0.19509032201613f, 0.21910124015687f, 0.24298017990326f, 0.26671275747490f,
|
| + 0.29028467725446f, 0.31368174039889f, 0.33688985339222f, 0.35989503653499f,
|
| + 0.38268343236509f, 0.40524131400499f, 0.42755509343028f, 0.44961132965461f,
|
| + 0.47139673682600f, 0.49289819222978f, 0.51410274419322f, 0.53499761988710f,
|
| + 0.55557023301960f, 0.57580819141785f, 0.59569930449243f, 0.61523159058063f,
|
| + 0.63439328416365f, 0.65317284295378f, 0.67155895484702f, 0.68954054473707f,
|
| + 0.70710678118655f, 0.72424708295147f, 0.74095112535496f, 0.75720884650648f,
|
| + 0.77301045336274f, 0.78834642762661f, 0.80320753148064f, 0.81758481315158f,
|
| + 0.83146961230255f, 0.84485356524971f, 0.85772861000027f, 0.87008699110871f,
|
| + 0.88192126434835f, 0.89322430119552f, 0.90398929312344f, 0.91420975570353f,
|
| + 0.92387953251129f, 0.93299279883474f, 0.94154406518302f, 0.94952818059304f,
|
| + 0.95694033573221f, 0.96377606579544f, 0.97003125319454f, 0.97570213003853f,
|
| + 0.98078528040323f, 0.98527764238894f, 0.98917650996478f, 0.99247953459871f,
|
| + 0.99518472667220f, 0.99729045667869f, 0.99879545620517f, 0.99969881869620f,
|
| + 1.00000000000000f, 0.99969881869620f, 0.99879545620517f, 0.99729045667869f,
|
| + 0.99518472667220f, 0.99247953459871f, 0.98917650996478f, 0.98527764238894f,
|
| + 0.98078528040323f, 0.97570213003853f, 0.97003125319454f, 0.96377606579544f,
|
| + 0.95694033573221f, 0.94952818059304f, 0.94154406518302f, 0.93299279883474f,
|
| + 0.92387953251129f, 0.91420975570353f, 0.90398929312344f, 0.89322430119552f,
|
| + 0.88192126434835f, 0.87008699110871f, 0.85772861000027f, 0.84485356524971f,
|
| + 0.83146961230255f, 0.81758481315158f, 0.80320753148064f, 0.78834642762661f,
|
| + 0.77301045336274f, 0.75720884650648f, 0.74095112535496f, 0.72424708295147f,
|
| + 0.70710678118655f, 0.68954054473707f, 0.67155895484702f, 0.65317284295378f,
|
| + 0.63439328416365f, 0.61523159058063f, 0.59569930449243f, 0.57580819141785f,
|
| + 0.55557023301960f, 0.53499761988710f, 0.51410274419322f, 0.49289819222978f,
|
| + 0.47139673682600f, 0.44961132965461f, 0.42755509343028f, 0.40524131400499f,
|
| + 0.38268343236509f, 0.35989503653499f, 0.33688985339222f, 0.31368174039889f,
|
| + 0.29028467725446f, 0.26671275747490f, 0.24298017990326f, 0.21910124015687f,
|
| + 0.19509032201613f, 0.17096188876030f, 0.14673047445536f, 0.12241067519922f,
|
| + 0.09801714032956f, 0.07356456359967f, 0.04906767432742f, 0.02454122852291f};
|
| +
|
| +} // namespace
|
| +
|
| +SuppressionFilter::SuppressionFilter(int sample_rate_hz)
|
| + : sample_rate_hz_(sample_rate_hz),
|
| + e_output_old_(NumBandsForRate(sample_rate_hz_)) {
|
| + RTC_DCHECK(ValidFullBandRate(sample_rate_hz_));
|
| + e_input_old_.fill(0.f);
|
| + std::for_each(e_output_old_.begin(), e_output_old_.end(),
|
| + [](std::array<float, kFftLengthBy2>& a) { a.fill(0.f); });
|
| +}
|
| +
|
| +SuppressionFilter::~SuppressionFilter() = default;
|
| +
|
| +void SuppressionFilter::ApplyGain(
|
| + const FftData& comfort_noise,
|
| + const FftData& comfort_noise_high_band,
|
| + const std::array<float, kFftLengthBy2Plus1>& suppression_gain,
|
| + std::vector<std::vector<float>>* e) {
|
| + RTC_DCHECK_EQ(e->size(), NumBandsForRate(sample_rate_hz_));
|
| + FftData E;
|
| + std::array<float, kFftLength> e_extended;
|
| + constexpr float kIfftNormalization = 2.f / kFftLength;
|
| +
|
| + // Analysis filterbank
|
| + std::transform(e_input_old_.begin(), e_input_old_.end(),
|
| + std::begin(kSqrtHanning), e_extended.begin(),
|
| + std::multiplies<float>());
|
| + std::transform((*e)[0].begin(), (*e)[0].end(),
|
| + std::begin(kSqrtHanning) + kFftLengthBy2,
|
| + e_extended.begin() + kFftLengthBy2, std::multiplies<float>());
|
| + std::copy((*e)[0].begin(), (*e)[0].end(), e_input_old_.begin());
|
| + fft_.Fft(&e_extended, &E);
|
| +
|
| + // Apply gain.
|
| + std::transform(suppression_gain.begin(), suppression_gain.end(), E.re.begin(),
|
| + E.re.begin(), std::multiplies<float>());
|
| + std::transform(suppression_gain.begin(), suppression_gain.end(), E.im.begin(),
|
| + E.im.begin(), std::multiplies<float>());
|
| +
|
| + // Compute and add the comfort noise.
|
| + std::array<float, kFftLengthBy2Plus1> scaled_comfort_noise;
|
| + std::transform(suppression_gain.begin(), suppression_gain.end(),
|
| + comfort_noise.re.begin(), scaled_comfort_noise.begin(),
|
| + [](float a, float b) { return std::max(1.f - a, 0.f) * b; });
|
| + std::transform(scaled_comfort_noise.begin(), scaled_comfort_noise.end(),
|
| + E.re.begin(), E.re.begin(), std::plus<float>());
|
| + std::transform(suppression_gain.begin(), suppression_gain.end(),
|
| + comfort_noise.im.begin(), scaled_comfort_noise.begin(),
|
| + [](float a, float b) { return std::max(1.f - a, 0.f) * b; });
|
| + std::transform(scaled_comfort_noise.begin(), scaled_comfort_noise.end(),
|
| + E.im.begin(), E.im.begin(), std::plus<float>());
|
| +
|
| + // Synthesis filterbank.
|
| + fft_.Ifft(E, &e_extended);
|
| + std::transform(e_output_old_[0].begin(), e_output_old_[0].end(),
|
| + std::begin(kSqrtHanning) + kFftLengthBy2, (*e)[0].begin(),
|
| + [&](float a, float b) { return kIfftNormalization * a * b; });
|
| + std::transform(e_extended.begin(), e_extended.begin() + kFftLengthBy2,
|
| + std::begin(kSqrtHanning), e_extended.begin(),
|
| + [&](float a, float b) { return kIfftNormalization * a * b; });
|
| + std::transform((*e)[0].begin(), (*e)[0].end(), e_extended.begin(),
|
| + (*e)[0].begin(), std::plus<float>());
|
| + std::for_each((*e)[0].begin(), (*e)[0].end(), [](float& x_k) {
|
| + x_k = std::max(std::min(x_k, 32767.0f), -32768.0f);
|
| + });
|
| + std::copy(e_extended.begin() + kFftLengthBy2, e_extended.begin() + kFftLength,
|
| + std::begin(e_output_old_[0]));
|
| +
|
| + if (e->size() > 1) {
|
| + // Form time-domain high-band noise.
|
| + std::array<float, kFftLength> time_domain_high_band_noise;
|
| + std::transform(comfort_noise_high_band.re.begin(),
|
| + comfort_noise_high_band.re.end(), E.re.begin(),
|
| + [&](float a) { return kIfftNormalization * a; });
|
| + std::transform(comfort_noise_high_band.im.begin(),
|
| + comfort_noise_high_band.im.end(), E.im.begin(),
|
| + [&](float a) { return kIfftNormalization * a; });
|
| + fft_.Ifft(E, &time_domain_high_band_noise);
|
| +
|
| + // Scale and apply the noise to the signals.
|
| + // TODO(peah): Ensure that the high bands are properly delayed.
|
| + constexpr int kNumBandsAveragingUpperGain = kFftLengthBy2 / 4;
|
| + constexpr float kOneByNumBandsAveragingUpperGain =
|
| + 1.f / kNumBandsAveragingUpperGain;
|
| + float high_bands_gain =
|
| + std::accumulate(suppression_gain.end() - kNumBandsAveragingUpperGain,
|
| + suppression_gain.end(), 0.f) *
|
| + kOneByNumBandsAveragingUpperGain;
|
| +
|
| + float high_bands_noise_scaling =
|
| + 0.4f * std::max(1.f - high_bands_gain * high_bands_gain, 0.f);
|
| +
|
| + std::transform(
|
| + (*e)[1].begin(), (*e)[1].end(), time_domain_high_band_noise.begin(),
|
| + (*e)[1].begin(), [&](float a, float b) {
|
| + return std::max(
|
| + std::min(b * high_bands_noise_scaling + high_bands_gain * a,
|
| + 32767.0f),
|
| + -32768.0f);
|
| + });
|
| +
|
| + if (e->size() > 2) {
|
| + RTC_DCHECK_EQ(3, e->size());
|
| + std::for_each((*e)[2].begin(), (*e)[2].end(), [&](float& a) {
|
| + a = std::max(std::min(a * high_bands_gain, 32767.0f), -32768.0f);
|
| + });
|
| + }
|
| +
|
| + std::array<float, kFftLengthBy2> tmp;
|
| + for (size_t k = 1; k < e->size(); ++k) {
|
| + std::copy((*e)[k].begin(), (*e)[k].end(), tmp.begin());
|
| + std::copy(e_output_old_[k].begin(), e_output_old_[k].end(),
|
| + (*e)[k].begin());
|
| + std::copy(tmp.begin(), tmp.end(), e_output_old_[k].begin());
|
| + }
|
| + }
|
| +}
|
| +
|
| +} // namespace webrtc
|
|
|