Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(121)

Unified Diff: webrtc/modules/audio_processing/aec3/residual_echo_estimator.cc

Issue 2678423005: Finalization of the first version of EchoCanceller 3 (Closed)
Patch Set: Fixed compilation error Created 3 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: webrtc/modules/audio_processing/aec3/residual_echo_estimator.cc
diff --git a/webrtc/modules/audio_processing/aec3/residual_echo_estimator.cc b/webrtc/modules/audio_processing/aec3/residual_echo_estimator.cc
new file mode 100644
index 0000000000000000000000000000000000000000..38d5beb5fba0c4d5873bfe2ccc7db91191f2ad8f
--- /dev/null
+++ b/webrtc/modules/audio_processing/aec3/residual_echo_estimator.cc
@@ -0,0 +1,215 @@
+/*
+ * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "webrtc/modules/audio_processing/aec3/residual_echo_estimator.h"
+
+#include <math.h>
+#include <vector>
+
+#include "webrtc/base/checks.h"
+
+namespace webrtc {
+namespace {
+
+constexpr float kSaturationLeakageFactor = 10.f;
+constexpr size_t kSaturationLeakageBlocks = 10;
+
+// Estimates the residual echo power when there is no detection correlation
+// between the render and capture signals.
+void InfiniteErlPowerEstimate(
+ size_t active_render_counter,
+ size_t blocks_since_last_saturation,
+ const std::array<float, kFftLengthBy2Plus1>& S2_fallback,
+ std::array<float, kFftLengthBy2Plus1>* R2) {
+ if (active_render_counter > 5 * 250) {
+ // After an amount of active render samples for which an echo should have
+ // been detected in the capture signal if the ERL was not infinite, set the
+ // residual echo to 0.
+ R2->fill(0.f);
+ } else {
+ // Before certainty has been reached about the presence of echo, use the
+ // fallback echo power estimate as the residual echo estimate. Add a leakage
+ // factor when there is saturation.
+ std::copy(S2_fallback.begin(), S2_fallback.end(), R2->begin());
+ if (blocks_since_last_saturation < kSaturationLeakageBlocks) {
+ std::for_each(R2->begin(), R2->end(),
+ [](float& a) { a *= kSaturationLeakageFactor; });
+ }
+ }
+}
+
+// Estimates the echo power in an half-duplex manner.
+void HalfDuplexPowerEstimate(bool active_render,
+ const std::array<float, kFftLengthBy2Plus1>& Y2,
+ std::array<float, kFftLengthBy2Plus1>* R2) {
+ // Set the residual echo power to the power of the capture signal.
+ if (active_render) {
+ std::copy(Y2.begin(), Y2.end(), R2->begin());
+ } else {
+ R2->fill(0.f);
+ }
+}
+
+// Estimates the residual echo power based on gains.
+void GainBasedPowerEstimate(
+ size_t external_delay,
+ const FftBuffer& X_buffer,
+ size_t blocks_since_last_saturation,
+ const std::array<bool, kFftLengthBy2Plus1>& bands_with_reliable_filter,
+ const std::array<float, kFftLengthBy2Plus1>& echo_path_gain,
+ const std::array<float, kFftLengthBy2Plus1>& S2_fallback,
+ std::array<float, kFftLengthBy2Plus1>* R2) {
+ const auto& X2 = X_buffer.Spectrum(external_delay);
+
+ // Base the residual echo power on gain of the linear echo path estimate if
+ // that is reliable, otherwise use the fallback echo path estimate. Add a
+ // leakage factor when there is saturation.
+ for (size_t k = 0; k < R2->size(); ++k) {
+ (*R2)[k] = bands_with_reliable_filter[k] ? echo_path_gain[k] * X2[k]
+ : S2_fallback[k];
+ }
+ if (blocks_since_last_saturation < kSaturationLeakageBlocks) {
+ std::for_each(R2->begin(), R2->end(),
+ [](float& a) { a *= kSaturationLeakageFactor; });
+ }
+}
+
+// Estimates the residual echo power based on the linear echo path.
+void ErleBasedPowerEstimate(
+ bool headset_detected,
+ const FftBuffer& X_buffer,
+ bool using_subtractor_output,
+ size_t linear_filter_based_delay,
+ size_t blocks_since_last_saturation,
+ bool poorly_aligned_filter,
+ const std::array<bool, kFftLengthBy2Plus1>& bands_with_reliable_filter,
+ const std::array<float, kFftLengthBy2Plus1>& echo_path_gain,
+ const std::array<float, kFftLengthBy2Plus1>& S2_fallback,
+ const std::array<float, kFftLengthBy2Plus1>& S2_linear,
+ const std::array<float, kFftLengthBy2Plus1>& Y2,
+ const std::array<float, kFftLengthBy2Plus1>& erle,
+ const std::array<float, kFftLengthBy2Plus1>& erl,
+ std::array<float, kFftLengthBy2Plus1>* R2) {
+ // Residual echo power after saturation.
+ if (blocks_since_last_saturation < kSaturationLeakageBlocks) {
+ for (size_t k = 0; k < R2->size(); ++k) {
+ (*R2)[k] = kSaturationLeakageFactor *
+ (bands_with_reliable_filter[k] && using_subtractor_output
+ ? S2_linear[k]
+ : std::min(S2_fallback[k], Y2[k]));
+ }
+ return;
+ }
+
+ // Residual echo power when a headset is used.
+ if (headset_detected) {
+ const auto& X2 = X_buffer.Spectrum(linear_filter_based_delay);
+ for (size_t k = 0; k < R2->size(); ++k) {
+ RTC_DCHECK_LT(0.f, erle[k]);
+ (*R2)[k] = bands_with_reliable_filter[k] && using_subtractor_output
+ ? S2_linear[k] / erle[k]
+ : std::min(S2_fallback[k], Y2[k]);
+ (*R2)[k] = std::min((*R2)[k], X2[k] * erl[k]);
+ }
+ return;
+ }
+
+ // Residual echo power when the adaptive filter is poorly aligned.
+ if (poorly_aligned_filter) {
+ for (size_t k = 0; k < R2->size(); ++k) {
+ (*R2)[k] = bands_with_reliable_filter[k] && using_subtractor_output
+ ? S2_linear[k]
+ : std::min(S2_fallback[k], Y2[k]);
+ }
+ return;
+ }
+
+ // Residual echo power when there is no recent saturation, no headset detected
+ // and when the adaptive filter is well aligned.
+ for (size_t k = 0; k < R2->size(); ++k) {
+ RTC_DCHECK_LT(0.f, erle[k]);
+ const auto& X2 = X_buffer.Spectrum(linear_filter_based_delay);
+ (*R2)[k] = bands_with_reliable_filter[k] && using_subtractor_output
+ ? S2_linear[k] / erle[k]
+ : std::min(echo_path_gain[k] * X2[k], Y2[k]);
+ }
+}
+
+} // namespace
+
+ResidualEchoEstimator::ResidualEchoEstimator() {
+ echo_path_gain_.fill(0.f);
+}
+
+ResidualEchoEstimator::~ResidualEchoEstimator() = default;
+
+void ResidualEchoEstimator::Estimate(
+ bool using_subtractor_output,
+ const AecState& aec_state,
+ const FftBuffer& X_buffer,
+ const std::vector<std::array<float, kFftLengthBy2Plus1>>& H2,
+ const std::array<float, kFftLengthBy2Plus1>& E2_main,
+ const std::array<float, kFftLengthBy2Plus1>& E2_shadow,
+ const std::array<float, kFftLengthBy2Plus1>& S2_linear,
+ const std::array<float, kFftLengthBy2Plus1>& S2_fallback,
+ const std::array<float, kFftLengthBy2Plus1>& Y2,
+ std::array<float, kFftLengthBy2Plus1>* R2) {
+ RTC_DCHECK(R2);
+ const rtc::Optional<size_t>& linear_filter_based_delay =
+ aec_state.FilterDelay();
+
+ // Update the echo path gain.
+ if (linear_filter_based_delay) {
+ std::copy(H2[*linear_filter_based_delay].begin(),
+ H2[*linear_filter_based_delay].end(), echo_path_gain_.begin());
+ }
+
+ // Counts the blocks since saturation.
+ if (aec_state.SaturatedCapture()) {
+ blocks_since_last_saturation_ = 0;
+ } else {
+ ++blocks_since_last_saturation_;
+ }
+
+ // Counts the number of active render blocks that are in a row.
+ if (aec_state.ActiveRender()) {
+ ++active_render_counter_;
+ }
+
+ const auto& bands_with_reliable_filter = aec_state.BandsWithReliableFilter();
+
+ if (aec_state.UsableLinearEstimate()) {
+ // Residual echo power estimation when the adaptive filter is reliable.
+ RTC_DCHECK(linear_filter_based_delay);
+ ErleBasedPowerEstimate(
+ aec_state.HeadsetDetected(), X_buffer, using_subtractor_output,
+ *linear_filter_based_delay, blocks_since_last_saturation_,
+ aec_state.PoorlyAlignedFilter(), bands_with_reliable_filter,
+ echo_path_gain_, S2_fallback, S2_linear, Y2, aec_state.Erle(),
+ aec_state.Erl(), R2);
+ } else if (aec_state.ModelBasedAecFeasible()) {
+ // Residual echo power when the adaptive filter is not reliable but still an
+ // external echo path delay is provided (and hence can be estimated).
+ RTC_DCHECK(aec_state.ExternalDelay());
+ GainBasedPowerEstimate(
+ *aec_state.ExternalDelay(), X_buffer, blocks_since_last_saturation_,
+ bands_with_reliable_filter, echo_path_gain_, S2_fallback, R2);
+ } else if (aec_state.EchoLeakageDetected()) {
+ // Residual echo power when an external residual echo detection algorithm
+ // has deemed the echo canceller to leak echoes.
+ HalfDuplexPowerEstimate(aec_state.ActiveRender(), Y2, R2);
+ } else {
+ // Residual echo power when none of the other cases are fulfilled.
+ InfiniteErlPowerEstimate(active_render_counter_,
+ blocks_since_last_saturation_, S2_fallback, R2);
+ }
+}
+
+} // namespace webrtc

Powered by Google App Engine
This is Rietveld 408576698