Index: webrtc/modules/audio_processing/aec3/residual_echo_estimator.cc |
diff --git a/webrtc/modules/audio_processing/aec3/residual_echo_estimator.cc b/webrtc/modules/audio_processing/aec3/residual_echo_estimator.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..38d5beb5fba0c4d5873bfe2ccc7db91191f2ad8f |
--- /dev/null |
+++ b/webrtc/modules/audio_processing/aec3/residual_echo_estimator.cc |
@@ -0,0 +1,215 @@ |
+/* |
+ * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
+ * |
+ * Use of this source code is governed by a BSD-style license |
+ * that can be found in the LICENSE file in the root of the source |
+ * tree. An additional intellectual property rights grant can be found |
+ * in the file PATENTS. All contributing project authors may |
+ * be found in the AUTHORS file in the root of the source tree. |
+ */ |
+ |
+#include "webrtc/modules/audio_processing/aec3/residual_echo_estimator.h" |
+ |
+#include <math.h> |
+#include <vector> |
+ |
+#include "webrtc/base/checks.h" |
+ |
+namespace webrtc { |
+namespace { |
+ |
+constexpr float kSaturationLeakageFactor = 10.f; |
+constexpr size_t kSaturationLeakageBlocks = 10; |
+ |
+// Estimates the residual echo power when there is no detection correlation |
+// between the render and capture signals. |
+void InfiniteErlPowerEstimate( |
+ size_t active_render_counter, |
+ size_t blocks_since_last_saturation, |
+ const std::array<float, kFftLengthBy2Plus1>& S2_fallback, |
+ std::array<float, kFftLengthBy2Plus1>* R2) { |
+ if (active_render_counter > 5 * 250) { |
+ // After an amount of active render samples for which an echo should have |
+ // been detected in the capture signal if the ERL was not infinite, set the |
+ // residual echo to 0. |
+ R2->fill(0.f); |
+ } else { |
+ // Before certainty has been reached about the presence of echo, use the |
+ // fallback echo power estimate as the residual echo estimate. Add a leakage |
+ // factor when there is saturation. |
+ std::copy(S2_fallback.begin(), S2_fallback.end(), R2->begin()); |
+ if (blocks_since_last_saturation < kSaturationLeakageBlocks) { |
+ std::for_each(R2->begin(), R2->end(), |
+ [](float& a) { a *= kSaturationLeakageFactor; }); |
+ } |
+ } |
+} |
+ |
+// Estimates the echo power in an half-duplex manner. |
+void HalfDuplexPowerEstimate(bool active_render, |
+ const std::array<float, kFftLengthBy2Plus1>& Y2, |
+ std::array<float, kFftLengthBy2Plus1>* R2) { |
+ // Set the residual echo power to the power of the capture signal. |
+ if (active_render) { |
+ std::copy(Y2.begin(), Y2.end(), R2->begin()); |
+ } else { |
+ R2->fill(0.f); |
+ } |
+} |
+ |
+// Estimates the residual echo power based on gains. |
+void GainBasedPowerEstimate( |
+ size_t external_delay, |
+ const FftBuffer& X_buffer, |
+ size_t blocks_since_last_saturation, |
+ const std::array<bool, kFftLengthBy2Plus1>& bands_with_reliable_filter, |
+ const std::array<float, kFftLengthBy2Plus1>& echo_path_gain, |
+ const std::array<float, kFftLengthBy2Plus1>& S2_fallback, |
+ std::array<float, kFftLengthBy2Plus1>* R2) { |
+ const auto& X2 = X_buffer.Spectrum(external_delay); |
+ |
+ // Base the residual echo power on gain of the linear echo path estimate if |
+ // that is reliable, otherwise use the fallback echo path estimate. Add a |
+ // leakage factor when there is saturation. |
+ for (size_t k = 0; k < R2->size(); ++k) { |
+ (*R2)[k] = bands_with_reliable_filter[k] ? echo_path_gain[k] * X2[k] |
+ : S2_fallback[k]; |
+ } |
+ if (blocks_since_last_saturation < kSaturationLeakageBlocks) { |
+ std::for_each(R2->begin(), R2->end(), |
+ [](float& a) { a *= kSaturationLeakageFactor; }); |
+ } |
+} |
+ |
+// Estimates the residual echo power based on the linear echo path. |
+void ErleBasedPowerEstimate( |
+ bool headset_detected, |
+ const FftBuffer& X_buffer, |
+ bool using_subtractor_output, |
+ size_t linear_filter_based_delay, |
+ size_t blocks_since_last_saturation, |
+ bool poorly_aligned_filter, |
+ const std::array<bool, kFftLengthBy2Plus1>& bands_with_reliable_filter, |
+ const std::array<float, kFftLengthBy2Plus1>& echo_path_gain, |
+ const std::array<float, kFftLengthBy2Plus1>& S2_fallback, |
+ const std::array<float, kFftLengthBy2Plus1>& S2_linear, |
+ const std::array<float, kFftLengthBy2Plus1>& Y2, |
+ const std::array<float, kFftLengthBy2Plus1>& erle, |
+ const std::array<float, kFftLengthBy2Plus1>& erl, |
+ std::array<float, kFftLengthBy2Plus1>* R2) { |
+ // Residual echo power after saturation. |
+ if (blocks_since_last_saturation < kSaturationLeakageBlocks) { |
+ for (size_t k = 0; k < R2->size(); ++k) { |
+ (*R2)[k] = kSaturationLeakageFactor * |
+ (bands_with_reliable_filter[k] && using_subtractor_output |
+ ? S2_linear[k] |
+ : std::min(S2_fallback[k], Y2[k])); |
+ } |
+ return; |
+ } |
+ |
+ // Residual echo power when a headset is used. |
+ if (headset_detected) { |
+ const auto& X2 = X_buffer.Spectrum(linear_filter_based_delay); |
+ for (size_t k = 0; k < R2->size(); ++k) { |
+ RTC_DCHECK_LT(0.f, erle[k]); |
+ (*R2)[k] = bands_with_reliable_filter[k] && using_subtractor_output |
+ ? S2_linear[k] / erle[k] |
+ : std::min(S2_fallback[k], Y2[k]); |
+ (*R2)[k] = std::min((*R2)[k], X2[k] * erl[k]); |
+ } |
+ return; |
+ } |
+ |
+ // Residual echo power when the adaptive filter is poorly aligned. |
+ if (poorly_aligned_filter) { |
+ for (size_t k = 0; k < R2->size(); ++k) { |
+ (*R2)[k] = bands_with_reliable_filter[k] && using_subtractor_output |
+ ? S2_linear[k] |
+ : std::min(S2_fallback[k], Y2[k]); |
+ } |
+ return; |
+ } |
+ |
+ // Residual echo power when there is no recent saturation, no headset detected |
+ // and when the adaptive filter is well aligned. |
+ for (size_t k = 0; k < R2->size(); ++k) { |
+ RTC_DCHECK_LT(0.f, erle[k]); |
+ const auto& X2 = X_buffer.Spectrum(linear_filter_based_delay); |
+ (*R2)[k] = bands_with_reliable_filter[k] && using_subtractor_output |
+ ? S2_linear[k] / erle[k] |
+ : std::min(echo_path_gain[k] * X2[k], Y2[k]); |
+ } |
+} |
+ |
+} // namespace |
+ |
+ResidualEchoEstimator::ResidualEchoEstimator() { |
+ echo_path_gain_.fill(0.f); |
+} |
+ |
+ResidualEchoEstimator::~ResidualEchoEstimator() = default; |
+ |
+void ResidualEchoEstimator::Estimate( |
+ bool using_subtractor_output, |
+ const AecState& aec_state, |
+ const FftBuffer& X_buffer, |
+ const std::vector<std::array<float, kFftLengthBy2Plus1>>& H2, |
+ const std::array<float, kFftLengthBy2Plus1>& E2_main, |
+ const std::array<float, kFftLengthBy2Plus1>& E2_shadow, |
+ const std::array<float, kFftLengthBy2Plus1>& S2_linear, |
+ const std::array<float, kFftLengthBy2Plus1>& S2_fallback, |
+ const std::array<float, kFftLengthBy2Plus1>& Y2, |
+ std::array<float, kFftLengthBy2Plus1>* R2) { |
+ RTC_DCHECK(R2); |
+ const rtc::Optional<size_t>& linear_filter_based_delay = |
+ aec_state.FilterDelay(); |
+ |
+ // Update the echo path gain. |
+ if (linear_filter_based_delay) { |
+ std::copy(H2[*linear_filter_based_delay].begin(), |
+ H2[*linear_filter_based_delay].end(), echo_path_gain_.begin()); |
+ } |
+ |
+ // Counts the blocks since saturation. |
+ if (aec_state.SaturatedCapture()) { |
+ blocks_since_last_saturation_ = 0; |
+ } else { |
+ ++blocks_since_last_saturation_; |
+ } |
+ |
+ // Counts the number of active render blocks that are in a row. |
+ if (aec_state.ActiveRender()) { |
+ ++active_render_counter_; |
+ } |
+ |
+ const auto& bands_with_reliable_filter = aec_state.BandsWithReliableFilter(); |
+ |
+ if (aec_state.UsableLinearEstimate()) { |
+ // Residual echo power estimation when the adaptive filter is reliable. |
+ RTC_DCHECK(linear_filter_based_delay); |
+ ErleBasedPowerEstimate( |
+ aec_state.HeadsetDetected(), X_buffer, using_subtractor_output, |
+ *linear_filter_based_delay, blocks_since_last_saturation_, |
+ aec_state.PoorlyAlignedFilter(), bands_with_reliable_filter, |
+ echo_path_gain_, S2_fallback, S2_linear, Y2, aec_state.Erle(), |
+ aec_state.Erl(), R2); |
+ } else if (aec_state.ModelBasedAecFeasible()) { |
+ // Residual echo power when the adaptive filter is not reliable but still an |
+ // external echo path delay is provided (and hence can be estimated). |
+ RTC_DCHECK(aec_state.ExternalDelay()); |
+ GainBasedPowerEstimate( |
+ *aec_state.ExternalDelay(), X_buffer, blocks_since_last_saturation_, |
+ bands_with_reliable_filter, echo_path_gain_, S2_fallback, R2); |
+ } else if (aec_state.EchoLeakageDetected()) { |
+ // Residual echo power when an external residual echo detection algorithm |
+ // has deemed the echo canceller to leak echoes. |
+ HalfDuplexPowerEstimate(aec_state.ActiveRender(), Y2, R2); |
+ } else { |
+ // Residual echo power when none of the other cases are fulfilled. |
+ InfiniteErlPowerEstimate(active_render_counter_, |
+ blocks_since_last_saturation_, S2_fallback, R2); |
+ } |
+} |
+ |
+} // namespace webrtc |