| Index: webrtc/modules/audio_processing/aec3/aec_state_unittest.cc
 | 
| diff --git a/webrtc/modules/audio_processing/aec3/aec_state_unittest.cc b/webrtc/modules/audio_processing/aec3/aec_state_unittest.cc
 | 
| new file mode 100644
 | 
| index 0000000000000000000000000000000000000000..6b25f25e08309d5f14992cb695815f87b952f1bb
 | 
| --- /dev/null
 | 
| +++ b/webrtc/modules/audio_processing/aec3/aec_state_unittest.cc
 | 
| @@ -0,0 +1,276 @@
 | 
| +/*
 | 
| + *  Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
 | 
| + *
 | 
| + *  Use of this source code is governed by a BSD-style license
 | 
| + *  that can be found in the LICENSE file in the root of the source
 | 
| + *  tree. An additional intellectual property rights grant can be found
 | 
| + *  in the file PATENTS.  All contributing project authors may
 | 
| + *  be found in the AUTHORS file in the root of the source tree.
 | 
| + */
 | 
| +
 | 
| +#include "webrtc/modules/audio_processing/aec3/aec_state.h"
 | 
| +
 | 
| +#include "webrtc/modules/audio_processing/logging/apm_data_dumper.h"
 | 
| +#include "webrtc/test/gtest.h"
 | 
| +
 | 
| +namespace webrtc {
 | 
| +
 | 
| +// Verify the general functionality of AecState
 | 
| +TEST(AecState, NormalUsage) {
 | 
| +  ApmDataDumper data_dumper(42);
 | 
| +  AecState state;
 | 
| +  FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30));
 | 
| +  std::array<float, kFftLengthBy2Plus1> E2_main;
 | 
| +  std::array<float, kFftLengthBy2Plus1> E2_shadow;
 | 
| +  std::array<float, kFftLengthBy2Plus1> Y2;
 | 
| +  std::array<float, kBlockSize> x;
 | 
| +  EchoPathVariability echo_path_variability(false, false);
 | 
| +  x.fill(0.f);
 | 
| +
 | 
| +  std::vector<std::array<float, kFftLengthBy2Plus1>>
 | 
| +      converged_filter_frequency_response(10);
 | 
| +  for (auto& v : converged_filter_frequency_response) {
 | 
| +    v.fill(0.01f);
 | 
| +  }
 | 
| +  std::vector<std::array<float, kFftLengthBy2Plus1>>
 | 
| +      diverged_filter_frequency_response = converged_filter_frequency_response;
 | 
| +  converged_filter_frequency_response[2].fill(100.f);
 | 
| +
 | 
| +  // Verify that model based aec feasibility and linear AEC usability are false
 | 
| +  // when the filter is diverged and there is no external delay reported.
 | 
| +  state.Update(diverged_filter_frequency_response, rtc::Optional<size_t>(),
 | 
| +               X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
 | 
| +               false);
 | 
| +  EXPECT_FALSE(state.ModelBasedAecFeasible());
 | 
| +  EXPECT_FALSE(state.UsableLinearEstimate());
 | 
| +
 | 
| +  // Verify that model based aec feasibility is true and that linear AEC
 | 
| +  // usability is false when the filter is diverged and there is an external
 | 
| +  // delay reported.
 | 
| +  state.Update(diverged_filter_frequency_response, rtc::Optional<size_t>(),
 | 
| +               X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
 | 
| +               false);
 | 
| +  EXPECT_FALSE(state.ModelBasedAecFeasible());
 | 
| +  for (int k = 0; k < 50; ++k) {
 | 
| +    state.Update(diverged_filter_frequency_response, rtc::Optional<size_t>(2),
 | 
| +                 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
 | 
| +                 false);
 | 
| +  }
 | 
| +  EXPECT_TRUE(state.ModelBasedAecFeasible());
 | 
| +  EXPECT_FALSE(state.UsableLinearEstimate());
 | 
| +
 | 
| +  // Verify that linear AEC usability is true when the filter is converged
 | 
| +  for (int k = 0; k < 50; ++k) {
 | 
| +    state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
 | 
| +                 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
 | 
| +                 false);
 | 
| +  }
 | 
| +  EXPECT_TRUE(state.UsableLinearEstimate());
 | 
| +
 | 
| +  // Verify that linear AEC usability becomes false after an echo path change is
 | 
| +  // reported
 | 
| +  echo_path_variability = EchoPathVariability(true, false);
 | 
| +  state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
 | 
| +               X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
 | 
| +               false);
 | 
| +  EXPECT_FALSE(state.UsableLinearEstimate());
 | 
| +
 | 
| +  // Verify that the active render detection works as intended.
 | 
| +  x.fill(101.f);
 | 
| +  state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
 | 
| +               X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
 | 
| +               false);
 | 
| +  EXPECT_TRUE(state.ActiveRender());
 | 
| +
 | 
| +  x.fill(0.f);
 | 
| +  for (int k = 0; k < 200; ++k) {
 | 
| +    state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
 | 
| +                 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
 | 
| +                 false);
 | 
| +  }
 | 
| +  EXPECT_FALSE(state.ActiveRender());
 | 
| +
 | 
| +  x.fill(101.f);
 | 
| +  state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
 | 
| +               X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
 | 
| +               false);
 | 
| +  EXPECT_TRUE(state.ActiveRender());
 | 
| +
 | 
| +  // Verify that echo leakage is properly reported.
 | 
| +  state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
 | 
| +               X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
 | 
| +               false);
 | 
| +  EXPECT_FALSE(state.EchoLeakageDetected());
 | 
| +
 | 
| +  state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
 | 
| +               X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
 | 
| +               true);
 | 
| +  EXPECT_TRUE(state.EchoLeakageDetected());
 | 
| +
 | 
| +  // Verify that the bands containing reliable filter estimates are properly
 | 
| +  // reported.
 | 
| +  echo_path_variability = EchoPathVariability(false, false);
 | 
| +  for (int k = 0; k < 200; ++k) {
 | 
| +    state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
 | 
| +                 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
 | 
| +                 false);
 | 
| +  }
 | 
| +
 | 
| +  FftData X;
 | 
| +  X.re.fill(10000.f);
 | 
| +  X.im.fill(0.f);
 | 
| +  for (size_t k = 0; k < X_buffer.Buffer().size(); ++k) {
 | 
| +    X_buffer.Insert(X);
 | 
| +  }
 | 
| +
 | 
| +  Y2.fill(10.f * 1000.f * 1000.f);
 | 
| +  E2_main.fill(100.f * Y2[0]);
 | 
| +  E2_shadow.fill(100.f * Y2[0]);
 | 
| +  state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
 | 
| +               X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
 | 
| +               false);
 | 
| +
 | 
| +  E2_main.fill(0.1f * Y2[0]);
 | 
| +  E2_shadow.fill(E2_main[0]);
 | 
| +  for (size_t k = 0; k < Y2.size(); k += 2) {
 | 
| +    E2_main[k] = Y2[k];
 | 
| +    E2_shadow[k] = Y2[k];
 | 
| +  }
 | 
| +  state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
 | 
| +               X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
 | 
| +               false);
 | 
| +
 | 
| +  const std::array<bool, kFftLengthBy2Plus1>& reliable_bands =
 | 
| +      state.BandsWithReliableFilter();
 | 
| +
 | 
| +  EXPECT_EQ(reliable_bands[0], reliable_bands[1]);
 | 
| +  for (size_t k = 1; k < kFftLengthBy2 - 5; ++k) {
 | 
| +    EXPECT_TRUE(reliable_bands[k]);
 | 
| +  }
 | 
| +  for (size_t k = kFftLengthBy2 - 5; k < reliable_bands.size(); ++k) {
 | 
| +    EXPECT_EQ(reliable_bands[kFftLengthBy2 - 6], reliable_bands[k]);
 | 
| +  }
 | 
| +
 | 
| +  // Verify that the ERL is properly estimated
 | 
| +  Y2.fill(10.f * X.re[0] * X.re[0]);
 | 
| +  for (size_t k = 0; k < 100000; ++k) {
 | 
| +    state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
 | 
| +                 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
 | 
| +                 false);
 | 
| +  }
 | 
| +
 | 
| +  ASSERT_TRUE(state.UsableLinearEstimate());
 | 
| +  const std::array<float, kFftLengthBy2Plus1>& erl = state.Erl();
 | 
| +  std::for_each(erl.begin(), erl.end(),
 | 
| +                [](float a) { EXPECT_NEAR(10.f, a, 0.1); });
 | 
| +
 | 
| +  // Verify that the ERLE is properly estimated
 | 
| +  E2_main.fill(1.f * X.re[0] * X.re[0]);
 | 
| +  Y2.fill(10.f * E2_main[0]);
 | 
| +  for (size_t k = 0; k < 10000; ++k) {
 | 
| +    state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
 | 
| +                 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
 | 
| +                 false);
 | 
| +  }
 | 
| +  ASSERT_TRUE(state.UsableLinearEstimate());
 | 
| +  std::for_each(state.Erle().begin(), state.Erle().end(),
 | 
| +                [](float a) { EXPECT_NEAR(8.f, a, 0.1); });
 | 
| +
 | 
| +  E2_main.fill(1.f * X.re[0] * X.re[0]);
 | 
| +  Y2.fill(5.f * E2_main[0]);
 | 
| +  for (size_t k = 0; k < 10000; ++k) {
 | 
| +    state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
 | 
| +                 X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
 | 
| +                 false);
 | 
| +  }
 | 
| +  ASSERT_TRUE(state.UsableLinearEstimate());
 | 
| +  std::for_each(state.Erle().begin(), state.Erle().end(),
 | 
| +                [](float a) { EXPECT_NEAR(5.f, a, 0.1); });
 | 
| +}
 | 
| +
 | 
| +// Verifies the a non-significant delay is correctly identified.
 | 
| +TEST(AecState, NonSignificantDelay) {
 | 
| +  AecState state;
 | 
| +  FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30));
 | 
| +  std::array<float, kFftLengthBy2Plus1> E2_main;
 | 
| +  std::array<float, kFftLengthBy2Plus1> E2_shadow;
 | 
| +  std::array<float, kFftLengthBy2Plus1> Y2;
 | 
| +  std::array<float, kBlockSize> x;
 | 
| +  EchoPathVariability echo_path_variability(false, false);
 | 
| +  x.fill(0.f);
 | 
| +
 | 
| +  std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(30);
 | 
| +  for (auto& v : frequency_response) {
 | 
| +    v.fill(0.01f);
 | 
| +  }
 | 
| +
 | 
| +  // Verify that a non-significant filter delay is identified correctly.
 | 
| +  state.Update(frequency_response, rtc::Optional<size_t>(), X_buffer, E2_main,
 | 
| +               E2_shadow, Y2, x, echo_path_variability, false);
 | 
| +  EXPECT_FALSE(state.FilterDelay());
 | 
| +}
 | 
| +
 | 
| +// Verifies the delay for a converged filter is correctly identified.
 | 
| +TEST(AecState, ConvergedFilterDelay) {
 | 
| +  constexpr int kFilterLength = 10;
 | 
| +  AecState state;
 | 
| +  FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30));
 | 
| +  std::array<float, kFftLengthBy2Plus1> E2_main;
 | 
| +  std::array<float, kFftLengthBy2Plus1> E2_shadow;
 | 
| +  std::array<float, kFftLengthBy2Plus1> Y2;
 | 
| +  std::array<float, kBlockSize> x;
 | 
| +  EchoPathVariability echo_path_variability(false, false);
 | 
| +  x.fill(0.f);
 | 
| +
 | 
| +  std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(
 | 
| +      kFilterLength);
 | 
| +
 | 
| +  // Verify that the filter delay for a converged filter is properly identified.
 | 
| +  for (int k = 0; k < kFilterLength; ++k) {
 | 
| +    for (auto& v : frequency_response) {
 | 
| +      v.fill(0.01f);
 | 
| +    }
 | 
| +    frequency_response[k].fill(100.f);
 | 
| +
 | 
| +    state.Update(frequency_response, rtc::Optional<size_t>(), X_buffer, E2_main,
 | 
| +                 E2_shadow, Y2, x, echo_path_variability, false);
 | 
| +    EXPECT_TRUE(k == (kFilterLength - 1) || state.FilterDelay());
 | 
| +    if (k != (kFilterLength - 1)) {
 | 
| +      EXPECT_EQ(k, state.FilterDelay());
 | 
| +    }
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +// Verify that the externally reported delay is properly reported and converted.
 | 
| +TEST(AecState, ExternalDelay) {
 | 
| +  AecState state;
 | 
| +  std::array<float, kFftLengthBy2Plus1> E2_main;
 | 
| +  std::array<float, kFftLengthBy2Plus1> E2_shadow;
 | 
| +  std::array<float, kFftLengthBy2Plus1> Y2;
 | 
| +  std::array<float, kBlockSize> x;
 | 
| +  E2_main.fill(0.f);
 | 
| +  E2_shadow.fill(0.f);
 | 
| +  Y2.fill(0.f);
 | 
| +  x.fill(0.f);
 | 
| +  FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30));
 | 
| +  std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(30);
 | 
| +  for (auto& v : frequency_response) {
 | 
| +    v.fill(0.01f);
 | 
| +  }
 | 
| +
 | 
| +  for (size_t k = 0; k < frequency_response.size() - 1; ++k) {
 | 
| +    state.Update(frequency_response, rtc::Optional<size_t>(k * kBlockSize + 5),
 | 
| +                 X_buffer, E2_main, E2_shadow, Y2, x,
 | 
| +                 EchoPathVariability(false, false), false);
 | 
| +    EXPECT_TRUE(state.ExternalDelay());
 | 
| +    EXPECT_EQ(k, state.ExternalDelay());
 | 
| +  }
 | 
| +
 | 
| +  // Verify that the externally reported delay is properly unset when it is no
 | 
| +  // longer present.
 | 
| +  state.Update(frequency_response, rtc::Optional<size_t>(), X_buffer, E2_main,
 | 
| +               E2_shadow, Y2, x, EchoPathVariability(false, false), false);
 | 
| +  EXPECT_FALSE(state.ExternalDelay());
 | 
| +}
 | 
| +
 | 
| +}  // namespace webrtc
 | 
| 
 |