Index: webrtc/modules/audio_processing/aec3/aec_state_unittest.cc |
diff --git a/webrtc/modules/audio_processing/aec3/aec_state_unittest.cc b/webrtc/modules/audio_processing/aec3/aec_state_unittest.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..6b25f25e08309d5f14992cb695815f87b952f1bb |
--- /dev/null |
+++ b/webrtc/modules/audio_processing/aec3/aec_state_unittest.cc |
@@ -0,0 +1,276 @@ |
+/* |
+ * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
+ * |
+ * Use of this source code is governed by a BSD-style license |
+ * that can be found in the LICENSE file in the root of the source |
+ * tree. An additional intellectual property rights grant can be found |
+ * in the file PATENTS. All contributing project authors may |
+ * be found in the AUTHORS file in the root of the source tree. |
+ */ |
+ |
+#include "webrtc/modules/audio_processing/aec3/aec_state.h" |
+ |
+#include "webrtc/modules/audio_processing/logging/apm_data_dumper.h" |
+#include "webrtc/test/gtest.h" |
+ |
+namespace webrtc { |
+ |
+// Verify the general functionality of AecState |
+TEST(AecState, NormalUsage) { |
+ ApmDataDumper data_dumper(42); |
+ AecState state; |
+ FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30)); |
+ std::array<float, kFftLengthBy2Plus1> E2_main; |
+ std::array<float, kFftLengthBy2Plus1> E2_shadow; |
+ std::array<float, kFftLengthBy2Plus1> Y2; |
+ std::array<float, kBlockSize> x; |
+ EchoPathVariability echo_path_variability(false, false); |
+ x.fill(0.f); |
+ |
+ std::vector<std::array<float, kFftLengthBy2Plus1>> |
+ converged_filter_frequency_response(10); |
+ for (auto& v : converged_filter_frequency_response) { |
+ v.fill(0.01f); |
+ } |
+ std::vector<std::array<float, kFftLengthBy2Plus1>> |
+ diverged_filter_frequency_response = converged_filter_frequency_response; |
+ converged_filter_frequency_response[2].fill(100.f); |
+ |
+ // Verify that model based aec feasibility and linear AEC usability are false |
+ // when the filter is diverged and there is no external delay reported. |
+ state.Update(diverged_filter_frequency_response, rtc::Optional<size_t>(), |
+ X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
+ false); |
+ EXPECT_FALSE(state.ModelBasedAecFeasible()); |
+ EXPECT_FALSE(state.UsableLinearEstimate()); |
+ |
+ // Verify that model based aec feasibility is true and that linear AEC |
+ // usability is false when the filter is diverged and there is an external |
+ // delay reported. |
+ state.Update(diverged_filter_frequency_response, rtc::Optional<size_t>(), |
+ X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
+ false); |
+ EXPECT_FALSE(state.ModelBasedAecFeasible()); |
+ for (int k = 0; k < 50; ++k) { |
+ state.Update(diverged_filter_frequency_response, rtc::Optional<size_t>(2), |
+ X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
+ false); |
+ } |
+ EXPECT_TRUE(state.ModelBasedAecFeasible()); |
+ EXPECT_FALSE(state.UsableLinearEstimate()); |
+ |
+ // Verify that linear AEC usability is true when the filter is converged |
+ for (int k = 0; k < 50; ++k) { |
+ state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
+ X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
+ false); |
+ } |
+ EXPECT_TRUE(state.UsableLinearEstimate()); |
+ |
+ // Verify that linear AEC usability becomes false after an echo path change is |
+ // reported |
+ echo_path_variability = EchoPathVariability(true, false); |
+ state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
+ X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
+ false); |
+ EXPECT_FALSE(state.UsableLinearEstimate()); |
+ |
+ // Verify that the active render detection works as intended. |
+ x.fill(101.f); |
+ state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
+ X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
+ false); |
+ EXPECT_TRUE(state.ActiveRender()); |
+ |
+ x.fill(0.f); |
+ for (int k = 0; k < 200; ++k) { |
+ state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
+ X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
+ false); |
+ } |
+ EXPECT_FALSE(state.ActiveRender()); |
+ |
+ x.fill(101.f); |
+ state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
+ X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
+ false); |
+ EXPECT_TRUE(state.ActiveRender()); |
+ |
+ // Verify that echo leakage is properly reported. |
+ state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
+ X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
+ false); |
+ EXPECT_FALSE(state.EchoLeakageDetected()); |
+ |
+ state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
+ X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
+ true); |
+ EXPECT_TRUE(state.EchoLeakageDetected()); |
+ |
+ // Verify that the bands containing reliable filter estimates are properly |
+ // reported. |
+ echo_path_variability = EchoPathVariability(false, false); |
+ for (int k = 0; k < 200; ++k) { |
+ state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
+ X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
+ false); |
+ } |
+ |
+ FftData X; |
+ X.re.fill(10000.f); |
+ X.im.fill(0.f); |
+ for (size_t k = 0; k < X_buffer.Buffer().size(); ++k) { |
+ X_buffer.Insert(X); |
+ } |
+ |
+ Y2.fill(10.f * 1000.f * 1000.f); |
+ E2_main.fill(100.f * Y2[0]); |
+ E2_shadow.fill(100.f * Y2[0]); |
+ state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
+ X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
+ false); |
+ |
+ E2_main.fill(0.1f * Y2[0]); |
+ E2_shadow.fill(E2_main[0]); |
+ for (size_t k = 0; k < Y2.size(); k += 2) { |
+ E2_main[k] = Y2[k]; |
+ E2_shadow[k] = Y2[k]; |
+ } |
+ state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
+ X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
+ false); |
+ |
+ const std::array<bool, kFftLengthBy2Plus1>& reliable_bands = |
+ state.BandsWithReliableFilter(); |
+ |
+ EXPECT_EQ(reliable_bands[0], reliable_bands[1]); |
+ for (size_t k = 1; k < kFftLengthBy2 - 5; ++k) { |
+ EXPECT_TRUE(reliable_bands[k]); |
+ } |
+ for (size_t k = kFftLengthBy2 - 5; k < reliable_bands.size(); ++k) { |
+ EXPECT_EQ(reliable_bands[kFftLengthBy2 - 6], reliable_bands[k]); |
+ } |
+ |
+ // Verify that the ERL is properly estimated |
+ Y2.fill(10.f * X.re[0] * X.re[0]); |
+ for (size_t k = 0; k < 100000; ++k) { |
+ state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
+ X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
+ false); |
+ } |
+ |
+ ASSERT_TRUE(state.UsableLinearEstimate()); |
+ const std::array<float, kFftLengthBy2Plus1>& erl = state.Erl(); |
+ std::for_each(erl.begin(), erl.end(), |
+ [](float a) { EXPECT_NEAR(10.f, a, 0.1); }); |
+ |
+ // Verify that the ERLE is properly estimated |
+ E2_main.fill(1.f * X.re[0] * X.re[0]); |
+ Y2.fill(10.f * E2_main[0]); |
+ for (size_t k = 0; k < 10000; ++k) { |
+ state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
+ X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
+ false); |
+ } |
+ ASSERT_TRUE(state.UsableLinearEstimate()); |
+ std::for_each(state.Erle().begin(), state.Erle().end(), |
+ [](float a) { EXPECT_NEAR(8.f, a, 0.1); }); |
+ |
+ E2_main.fill(1.f * X.re[0] * X.re[0]); |
+ Y2.fill(5.f * E2_main[0]); |
+ for (size_t k = 0; k < 10000; ++k) { |
+ state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2), |
+ X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability, |
+ false); |
+ } |
+ ASSERT_TRUE(state.UsableLinearEstimate()); |
+ std::for_each(state.Erle().begin(), state.Erle().end(), |
+ [](float a) { EXPECT_NEAR(5.f, a, 0.1); }); |
+} |
+ |
+// Verifies the a non-significant delay is correctly identified. |
+TEST(AecState, NonSignificantDelay) { |
+ AecState state; |
+ FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30)); |
+ std::array<float, kFftLengthBy2Plus1> E2_main; |
+ std::array<float, kFftLengthBy2Plus1> E2_shadow; |
+ std::array<float, kFftLengthBy2Plus1> Y2; |
+ std::array<float, kBlockSize> x; |
+ EchoPathVariability echo_path_variability(false, false); |
+ x.fill(0.f); |
+ |
+ std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(30); |
+ for (auto& v : frequency_response) { |
+ v.fill(0.01f); |
+ } |
+ |
+ // Verify that a non-significant filter delay is identified correctly. |
+ state.Update(frequency_response, rtc::Optional<size_t>(), X_buffer, E2_main, |
+ E2_shadow, Y2, x, echo_path_variability, false); |
+ EXPECT_FALSE(state.FilterDelay()); |
+} |
+ |
+// Verifies the delay for a converged filter is correctly identified. |
+TEST(AecState, ConvergedFilterDelay) { |
+ constexpr int kFilterLength = 10; |
+ AecState state; |
+ FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30)); |
+ std::array<float, kFftLengthBy2Plus1> E2_main; |
+ std::array<float, kFftLengthBy2Plus1> E2_shadow; |
+ std::array<float, kFftLengthBy2Plus1> Y2; |
+ std::array<float, kBlockSize> x; |
+ EchoPathVariability echo_path_variability(false, false); |
+ x.fill(0.f); |
+ |
+ std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response( |
+ kFilterLength); |
+ |
+ // Verify that the filter delay for a converged filter is properly identified. |
+ for (int k = 0; k < kFilterLength; ++k) { |
+ for (auto& v : frequency_response) { |
+ v.fill(0.01f); |
+ } |
+ frequency_response[k].fill(100.f); |
+ |
+ state.Update(frequency_response, rtc::Optional<size_t>(), X_buffer, E2_main, |
+ E2_shadow, Y2, x, echo_path_variability, false); |
+ EXPECT_TRUE(k == (kFilterLength - 1) || state.FilterDelay()); |
+ if (k != (kFilterLength - 1)) { |
+ EXPECT_EQ(k, state.FilterDelay()); |
+ } |
+ } |
+} |
+ |
+// Verify that the externally reported delay is properly reported and converted. |
+TEST(AecState, ExternalDelay) { |
+ AecState state; |
+ std::array<float, kFftLengthBy2Plus1> E2_main; |
+ std::array<float, kFftLengthBy2Plus1> E2_shadow; |
+ std::array<float, kFftLengthBy2Plus1> Y2; |
+ std::array<float, kBlockSize> x; |
+ E2_main.fill(0.f); |
+ E2_shadow.fill(0.f); |
+ Y2.fill(0.f); |
+ x.fill(0.f); |
+ FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30)); |
+ std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(30); |
+ for (auto& v : frequency_response) { |
+ v.fill(0.01f); |
+ } |
+ |
+ for (size_t k = 0; k < frequency_response.size() - 1; ++k) { |
+ state.Update(frequency_response, rtc::Optional<size_t>(k * kBlockSize + 5), |
+ X_buffer, E2_main, E2_shadow, Y2, x, |
+ EchoPathVariability(false, false), false); |
+ EXPECT_TRUE(state.ExternalDelay()); |
+ EXPECT_EQ(k, state.ExternalDelay()); |
+ } |
+ |
+ // Verify that the externally reported delay is properly unset when it is no |
+ // longer present. |
+ state.Update(frequency_response, rtc::Optional<size_t>(), X_buffer, E2_main, |
+ E2_shadow, Y2, x, EchoPathVariability(false, false), false); |
+ EXPECT_FALSE(state.ExternalDelay()); |
+} |
+ |
+} // namespace webrtc |