| Index: webrtc/modules/audio_processing/aec3/aec_state_unittest.cc
|
| diff --git a/webrtc/modules/audio_processing/aec3/aec_state_unittest.cc b/webrtc/modules/audio_processing/aec3/aec_state_unittest.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..6b25f25e08309d5f14992cb695815f87b952f1bb
|
| --- /dev/null
|
| +++ b/webrtc/modules/audio_processing/aec3/aec_state_unittest.cc
|
| @@ -0,0 +1,276 @@
|
| +/*
|
| + * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license
|
| + * that can be found in the LICENSE file in the root of the source
|
| + * tree. An additional intellectual property rights grant can be found
|
| + * in the file PATENTS. All contributing project authors may
|
| + * be found in the AUTHORS file in the root of the source tree.
|
| + */
|
| +
|
| +#include "webrtc/modules/audio_processing/aec3/aec_state.h"
|
| +
|
| +#include "webrtc/modules/audio_processing/logging/apm_data_dumper.h"
|
| +#include "webrtc/test/gtest.h"
|
| +
|
| +namespace webrtc {
|
| +
|
| +// Verify the general functionality of AecState
|
| +TEST(AecState, NormalUsage) {
|
| + ApmDataDumper data_dumper(42);
|
| + AecState state;
|
| + FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30));
|
| + std::array<float, kFftLengthBy2Plus1> E2_main;
|
| + std::array<float, kFftLengthBy2Plus1> E2_shadow;
|
| + std::array<float, kFftLengthBy2Plus1> Y2;
|
| + std::array<float, kBlockSize> x;
|
| + EchoPathVariability echo_path_variability(false, false);
|
| + x.fill(0.f);
|
| +
|
| + std::vector<std::array<float, kFftLengthBy2Plus1>>
|
| + converged_filter_frequency_response(10);
|
| + for (auto& v : converged_filter_frequency_response) {
|
| + v.fill(0.01f);
|
| + }
|
| + std::vector<std::array<float, kFftLengthBy2Plus1>>
|
| + diverged_filter_frequency_response = converged_filter_frequency_response;
|
| + converged_filter_frequency_response[2].fill(100.f);
|
| +
|
| + // Verify that model based aec feasibility and linear AEC usability are false
|
| + // when the filter is diverged and there is no external delay reported.
|
| + state.Update(diverged_filter_frequency_response, rtc::Optional<size_t>(),
|
| + X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
|
| + false);
|
| + EXPECT_FALSE(state.ModelBasedAecFeasible());
|
| + EXPECT_FALSE(state.UsableLinearEstimate());
|
| +
|
| + // Verify that model based aec feasibility is true and that linear AEC
|
| + // usability is false when the filter is diverged and there is an external
|
| + // delay reported.
|
| + state.Update(diverged_filter_frequency_response, rtc::Optional<size_t>(),
|
| + X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
|
| + false);
|
| + EXPECT_FALSE(state.ModelBasedAecFeasible());
|
| + for (int k = 0; k < 50; ++k) {
|
| + state.Update(diverged_filter_frequency_response, rtc::Optional<size_t>(2),
|
| + X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
|
| + false);
|
| + }
|
| + EXPECT_TRUE(state.ModelBasedAecFeasible());
|
| + EXPECT_FALSE(state.UsableLinearEstimate());
|
| +
|
| + // Verify that linear AEC usability is true when the filter is converged
|
| + for (int k = 0; k < 50; ++k) {
|
| + state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
|
| + X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
|
| + false);
|
| + }
|
| + EXPECT_TRUE(state.UsableLinearEstimate());
|
| +
|
| + // Verify that linear AEC usability becomes false after an echo path change is
|
| + // reported
|
| + echo_path_variability = EchoPathVariability(true, false);
|
| + state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
|
| + X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
|
| + false);
|
| + EXPECT_FALSE(state.UsableLinearEstimate());
|
| +
|
| + // Verify that the active render detection works as intended.
|
| + x.fill(101.f);
|
| + state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
|
| + X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
|
| + false);
|
| + EXPECT_TRUE(state.ActiveRender());
|
| +
|
| + x.fill(0.f);
|
| + for (int k = 0; k < 200; ++k) {
|
| + state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
|
| + X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
|
| + false);
|
| + }
|
| + EXPECT_FALSE(state.ActiveRender());
|
| +
|
| + x.fill(101.f);
|
| + state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
|
| + X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
|
| + false);
|
| + EXPECT_TRUE(state.ActiveRender());
|
| +
|
| + // Verify that echo leakage is properly reported.
|
| + state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
|
| + X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
|
| + false);
|
| + EXPECT_FALSE(state.EchoLeakageDetected());
|
| +
|
| + state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
|
| + X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
|
| + true);
|
| + EXPECT_TRUE(state.EchoLeakageDetected());
|
| +
|
| + // Verify that the bands containing reliable filter estimates are properly
|
| + // reported.
|
| + echo_path_variability = EchoPathVariability(false, false);
|
| + for (int k = 0; k < 200; ++k) {
|
| + state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
|
| + X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
|
| + false);
|
| + }
|
| +
|
| + FftData X;
|
| + X.re.fill(10000.f);
|
| + X.im.fill(0.f);
|
| + for (size_t k = 0; k < X_buffer.Buffer().size(); ++k) {
|
| + X_buffer.Insert(X);
|
| + }
|
| +
|
| + Y2.fill(10.f * 1000.f * 1000.f);
|
| + E2_main.fill(100.f * Y2[0]);
|
| + E2_shadow.fill(100.f * Y2[0]);
|
| + state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
|
| + X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
|
| + false);
|
| +
|
| + E2_main.fill(0.1f * Y2[0]);
|
| + E2_shadow.fill(E2_main[0]);
|
| + for (size_t k = 0; k < Y2.size(); k += 2) {
|
| + E2_main[k] = Y2[k];
|
| + E2_shadow[k] = Y2[k];
|
| + }
|
| + state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
|
| + X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
|
| + false);
|
| +
|
| + const std::array<bool, kFftLengthBy2Plus1>& reliable_bands =
|
| + state.BandsWithReliableFilter();
|
| +
|
| + EXPECT_EQ(reliable_bands[0], reliable_bands[1]);
|
| + for (size_t k = 1; k < kFftLengthBy2 - 5; ++k) {
|
| + EXPECT_TRUE(reliable_bands[k]);
|
| + }
|
| + for (size_t k = kFftLengthBy2 - 5; k < reliable_bands.size(); ++k) {
|
| + EXPECT_EQ(reliable_bands[kFftLengthBy2 - 6], reliable_bands[k]);
|
| + }
|
| +
|
| + // Verify that the ERL is properly estimated
|
| + Y2.fill(10.f * X.re[0] * X.re[0]);
|
| + for (size_t k = 0; k < 100000; ++k) {
|
| + state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
|
| + X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
|
| + false);
|
| + }
|
| +
|
| + ASSERT_TRUE(state.UsableLinearEstimate());
|
| + const std::array<float, kFftLengthBy2Plus1>& erl = state.Erl();
|
| + std::for_each(erl.begin(), erl.end(),
|
| + [](float a) { EXPECT_NEAR(10.f, a, 0.1); });
|
| +
|
| + // Verify that the ERLE is properly estimated
|
| + E2_main.fill(1.f * X.re[0] * X.re[0]);
|
| + Y2.fill(10.f * E2_main[0]);
|
| + for (size_t k = 0; k < 10000; ++k) {
|
| + state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
|
| + X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
|
| + false);
|
| + }
|
| + ASSERT_TRUE(state.UsableLinearEstimate());
|
| + std::for_each(state.Erle().begin(), state.Erle().end(),
|
| + [](float a) { EXPECT_NEAR(8.f, a, 0.1); });
|
| +
|
| + E2_main.fill(1.f * X.re[0] * X.re[0]);
|
| + Y2.fill(5.f * E2_main[0]);
|
| + for (size_t k = 0; k < 10000; ++k) {
|
| + state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
|
| + X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
|
| + false);
|
| + }
|
| + ASSERT_TRUE(state.UsableLinearEstimate());
|
| + std::for_each(state.Erle().begin(), state.Erle().end(),
|
| + [](float a) { EXPECT_NEAR(5.f, a, 0.1); });
|
| +}
|
| +
|
| +// Verifies the a non-significant delay is correctly identified.
|
| +TEST(AecState, NonSignificantDelay) {
|
| + AecState state;
|
| + FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30));
|
| + std::array<float, kFftLengthBy2Plus1> E2_main;
|
| + std::array<float, kFftLengthBy2Plus1> E2_shadow;
|
| + std::array<float, kFftLengthBy2Plus1> Y2;
|
| + std::array<float, kBlockSize> x;
|
| + EchoPathVariability echo_path_variability(false, false);
|
| + x.fill(0.f);
|
| +
|
| + std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(30);
|
| + for (auto& v : frequency_response) {
|
| + v.fill(0.01f);
|
| + }
|
| +
|
| + // Verify that a non-significant filter delay is identified correctly.
|
| + state.Update(frequency_response, rtc::Optional<size_t>(), X_buffer, E2_main,
|
| + E2_shadow, Y2, x, echo_path_variability, false);
|
| + EXPECT_FALSE(state.FilterDelay());
|
| +}
|
| +
|
| +// Verifies the delay for a converged filter is correctly identified.
|
| +TEST(AecState, ConvergedFilterDelay) {
|
| + constexpr int kFilterLength = 10;
|
| + AecState state;
|
| + FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30));
|
| + std::array<float, kFftLengthBy2Plus1> E2_main;
|
| + std::array<float, kFftLengthBy2Plus1> E2_shadow;
|
| + std::array<float, kFftLengthBy2Plus1> Y2;
|
| + std::array<float, kBlockSize> x;
|
| + EchoPathVariability echo_path_variability(false, false);
|
| + x.fill(0.f);
|
| +
|
| + std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(
|
| + kFilterLength);
|
| +
|
| + // Verify that the filter delay for a converged filter is properly identified.
|
| + for (int k = 0; k < kFilterLength; ++k) {
|
| + for (auto& v : frequency_response) {
|
| + v.fill(0.01f);
|
| + }
|
| + frequency_response[k].fill(100.f);
|
| +
|
| + state.Update(frequency_response, rtc::Optional<size_t>(), X_buffer, E2_main,
|
| + E2_shadow, Y2, x, echo_path_variability, false);
|
| + EXPECT_TRUE(k == (kFilterLength - 1) || state.FilterDelay());
|
| + if (k != (kFilterLength - 1)) {
|
| + EXPECT_EQ(k, state.FilterDelay());
|
| + }
|
| + }
|
| +}
|
| +
|
| +// Verify that the externally reported delay is properly reported and converted.
|
| +TEST(AecState, ExternalDelay) {
|
| + AecState state;
|
| + std::array<float, kFftLengthBy2Plus1> E2_main;
|
| + std::array<float, kFftLengthBy2Plus1> E2_shadow;
|
| + std::array<float, kFftLengthBy2Plus1> Y2;
|
| + std::array<float, kBlockSize> x;
|
| + E2_main.fill(0.f);
|
| + E2_shadow.fill(0.f);
|
| + Y2.fill(0.f);
|
| + x.fill(0.f);
|
| + FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30));
|
| + std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(30);
|
| + for (auto& v : frequency_response) {
|
| + v.fill(0.01f);
|
| + }
|
| +
|
| + for (size_t k = 0; k < frequency_response.size() - 1; ++k) {
|
| + state.Update(frequency_response, rtc::Optional<size_t>(k * kBlockSize + 5),
|
| + X_buffer, E2_main, E2_shadow, Y2, x,
|
| + EchoPathVariability(false, false), false);
|
| + EXPECT_TRUE(state.ExternalDelay());
|
| + EXPECT_EQ(k, state.ExternalDelay());
|
| + }
|
| +
|
| + // Verify that the externally reported delay is properly unset when it is no
|
| + // longer present.
|
| + state.Update(frequency_response, rtc::Optional<size_t>(), X_buffer, E2_main,
|
| + E2_shadow, Y2, x, EchoPathVariability(false, false), false);
|
| + EXPECT_FALSE(state.ExternalDelay());
|
| +}
|
| +
|
| +} // namespace webrtc
|
|
|