Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(336)

Unified Diff: webrtc/modules/audio_processing/aec3/aec_state_unittest.cc

Issue 2678423005: Finalization of the first version of EchoCanceller 3 (Closed)
Patch Set: Fixed compilation error Created 3 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: webrtc/modules/audio_processing/aec3/aec_state_unittest.cc
diff --git a/webrtc/modules/audio_processing/aec3/aec_state_unittest.cc b/webrtc/modules/audio_processing/aec3/aec_state_unittest.cc
new file mode 100644
index 0000000000000000000000000000000000000000..6b25f25e08309d5f14992cb695815f87b952f1bb
--- /dev/null
+++ b/webrtc/modules/audio_processing/aec3/aec_state_unittest.cc
@@ -0,0 +1,276 @@
+/*
+ * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "webrtc/modules/audio_processing/aec3/aec_state.h"
+
+#include "webrtc/modules/audio_processing/logging/apm_data_dumper.h"
+#include "webrtc/test/gtest.h"
+
+namespace webrtc {
+
+// Verify the general functionality of AecState
+TEST(AecState, NormalUsage) {
+ ApmDataDumper data_dumper(42);
+ AecState state;
+ FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30));
+ std::array<float, kFftLengthBy2Plus1> E2_main;
+ std::array<float, kFftLengthBy2Plus1> E2_shadow;
+ std::array<float, kFftLengthBy2Plus1> Y2;
+ std::array<float, kBlockSize> x;
+ EchoPathVariability echo_path_variability(false, false);
+ x.fill(0.f);
+
+ std::vector<std::array<float, kFftLengthBy2Plus1>>
+ converged_filter_frequency_response(10);
+ for (auto& v : converged_filter_frequency_response) {
+ v.fill(0.01f);
+ }
+ std::vector<std::array<float, kFftLengthBy2Plus1>>
+ diverged_filter_frequency_response = converged_filter_frequency_response;
+ converged_filter_frequency_response[2].fill(100.f);
+
+ // Verify that model based aec feasibility and linear AEC usability are false
+ // when the filter is diverged and there is no external delay reported.
+ state.Update(diverged_filter_frequency_response, rtc::Optional<size_t>(),
+ X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
+ false);
+ EXPECT_FALSE(state.ModelBasedAecFeasible());
+ EXPECT_FALSE(state.UsableLinearEstimate());
+
+ // Verify that model based aec feasibility is true and that linear AEC
+ // usability is false when the filter is diverged and there is an external
+ // delay reported.
+ state.Update(diverged_filter_frequency_response, rtc::Optional<size_t>(),
+ X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
+ false);
+ EXPECT_FALSE(state.ModelBasedAecFeasible());
+ for (int k = 0; k < 50; ++k) {
+ state.Update(diverged_filter_frequency_response, rtc::Optional<size_t>(2),
+ X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
+ false);
+ }
+ EXPECT_TRUE(state.ModelBasedAecFeasible());
+ EXPECT_FALSE(state.UsableLinearEstimate());
+
+ // Verify that linear AEC usability is true when the filter is converged
+ for (int k = 0; k < 50; ++k) {
+ state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
+ X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
+ false);
+ }
+ EXPECT_TRUE(state.UsableLinearEstimate());
+
+ // Verify that linear AEC usability becomes false after an echo path change is
+ // reported
+ echo_path_variability = EchoPathVariability(true, false);
+ state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
+ X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
+ false);
+ EXPECT_FALSE(state.UsableLinearEstimate());
+
+ // Verify that the active render detection works as intended.
+ x.fill(101.f);
+ state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
+ X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
+ false);
+ EXPECT_TRUE(state.ActiveRender());
+
+ x.fill(0.f);
+ for (int k = 0; k < 200; ++k) {
+ state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
+ X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
+ false);
+ }
+ EXPECT_FALSE(state.ActiveRender());
+
+ x.fill(101.f);
+ state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
+ X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
+ false);
+ EXPECT_TRUE(state.ActiveRender());
+
+ // Verify that echo leakage is properly reported.
+ state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
+ X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
+ false);
+ EXPECT_FALSE(state.EchoLeakageDetected());
+
+ state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
+ X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
+ true);
+ EXPECT_TRUE(state.EchoLeakageDetected());
+
+ // Verify that the bands containing reliable filter estimates are properly
+ // reported.
+ echo_path_variability = EchoPathVariability(false, false);
+ for (int k = 0; k < 200; ++k) {
+ state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
+ X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
+ false);
+ }
+
+ FftData X;
+ X.re.fill(10000.f);
+ X.im.fill(0.f);
+ for (size_t k = 0; k < X_buffer.Buffer().size(); ++k) {
+ X_buffer.Insert(X);
+ }
+
+ Y2.fill(10.f * 1000.f * 1000.f);
+ E2_main.fill(100.f * Y2[0]);
+ E2_shadow.fill(100.f * Y2[0]);
+ state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
+ X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
+ false);
+
+ E2_main.fill(0.1f * Y2[0]);
+ E2_shadow.fill(E2_main[0]);
+ for (size_t k = 0; k < Y2.size(); k += 2) {
+ E2_main[k] = Y2[k];
+ E2_shadow[k] = Y2[k];
+ }
+ state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
+ X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
+ false);
+
+ const std::array<bool, kFftLengthBy2Plus1>& reliable_bands =
+ state.BandsWithReliableFilter();
+
+ EXPECT_EQ(reliable_bands[0], reliable_bands[1]);
+ for (size_t k = 1; k < kFftLengthBy2 - 5; ++k) {
+ EXPECT_TRUE(reliable_bands[k]);
+ }
+ for (size_t k = kFftLengthBy2 - 5; k < reliable_bands.size(); ++k) {
+ EXPECT_EQ(reliable_bands[kFftLengthBy2 - 6], reliable_bands[k]);
+ }
+
+ // Verify that the ERL is properly estimated
+ Y2.fill(10.f * X.re[0] * X.re[0]);
+ for (size_t k = 0; k < 100000; ++k) {
+ state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
+ X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
+ false);
+ }
+
+ ASSERT_TRUE(state.UsableLinearEstimate());
+ const std::array<float, kFftLengthBy2Plus1>& erl = state.Erl();
+ std::for_each(erl.begin(), erl.end(),
+ [](float a) { EXPECT_NEAR(10.f, a, 0.1); });
+
+ // Verify that the ERLE is properly estimated
+ E2_main.fill(1.f * X.re[0] * X.re[0]);
+ Y2.fill(10.f * E2_main[0]);
+ for (size_t k = 0; k < 10000; ++k) {
+ state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
+ X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
+ false);
+ }
+ ASSERT_TRUE(state.UsableLinearEstimate());
+ std::for_each(state.Erle().begin(), state.Erle().end(),
+ [](float a) { EXPECT_NEAR(8.f, a, 0.1); });
+
+ E2_main.fill(1.f * X.re[0] * X.re[0]);
+ Y2.fill(5.f * E2_main[0]);
+ for (size_t k = 0; k < 10000; ++k) {
+ state.Update(converged_filter_frequency_response, rtc::Optional<size_t>(2),
+ X_buffer, E2_main, E2_shadow, Y2, x, echo_path_variability,
+ false);
+ }
+ ASSERT_TRUE(state.UsableLinearEstimate());
+ std::for_each(state.Erle().begin(), state.Erle().end(),
+ [](float a) { EXPECT_NEAR(5.f, a, 0.1); });
+}
+
+// Verifies the a non-significant delay is correctly identified.
+TEST(AecState, NonSignificantDelay) {
+ AecState state;
+ FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30));
+ std::array<float, kFftLengthBy2Plus1> E2_main;
+ std::array<float, kFftLengthBy2Plus1> E2_shadow;
+ std::array<float, kFftLengthBy2Plus1> Y2;
+ std::array<float, kBlockSize> x;
+ EchoPathVariability echo_path_variability(false, false);
+ x.fill(0.f);
+
+ std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(30);
+ for (auto& v : frequency_response) {
+ v.fill(0.01f);
+ }
+
+ // Verify that a non-significant filter delay is identified correctly.
+ state.Update(frequency_response, rtc::Optional<size_t>(), X_buffer, E2_main,
+ E2_shadow, Y2, x, echo_path_variability, false);
+ EXPECT_FALSE(state.FilterDelay());
+}
+
+// Verifies the delay for a converged filter is correctly identified.
+TEST(AecState, ConvergedFilterDelay) {
+ constexpr int kFilterLength = 10;
+ AecState state;
+ FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30));
+ std::array<float, kFftLengthBy2Plus1> E2_main;
+ std::array<float, kFftLengthBy2Plus1> E2_shadow;
+ std::array<float, kFftLengthBy2Plus1> Y2;
+ std::array<float, kBlockSize> x;
+ EchoPathVariability echo_path_variability(false, false);
+ x.fill(0.f);
+
+ std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(
+ kFilterLength);
+
+ // Verify that the filter delay for a converged filter is properly identified.
+ for (int k = 0; k < kFilterLength; ++k) {
+ for (auto& v : frequency_response) {
+ v.fill(0.01f);
+ }
+ frequency_response[k].fill(100.f);
+
+ state.Update(frequency_response, rtc::Optional<size_t>(), X_buffer, E2_main,
+ E2_shadow, Y2, x, echo_path_variability, false);
+ EXPECT_TRUE(k == (kFilterLength - 1) || state.FilterDelay());
+ if (k != (kFilterLength - 1)) {
+ EXPECT_EQ(k, state.FilterDelay());
+ }
+ }
+}
+
+// Verify that the externally reported delay is properly reported and converted.
+TEST(AecState, ExternalDelay) {
+ AecState state;
+ std::array<float, kFftLengthBy2Plus1> E2_main;
+ std::array<float, kFftLengthBy2Plus1> E2_shadow;
+ std::array<float, kFftLengthBy2Plus1> Y2;
+ std::array<float, kBlockSize> x;
+ E2_main.fill(0.f);
+ E2_shadow.fill(0.f);
+ Y2.fill(0.f);
+ x.fill(0.f);
+ FftBuffer X_buffer(Aec3Optimization::kNone, 30, std::vector<size_t>(1, 30));
+ std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(30);
+ for (auto& v : frequency_response) {
+ v.fill(0.01f);
+ }
+
+ for (size_t k = 0; k < frequency_response.size() - 1; ++k) {
+ state.Update(frequency_response, rtc::Optional<size_t>(k * kBlockSize + 5),
+ X_buffer, E2_main, E2_shadow, Y2, x,
+ EchoPathVariability(false, false), false);
+ EXPECT_TRUE(state.ExternalDelay());
+ EXPECT_EQ(k, state.ExternalDelay());
+ }
+
+ // Verify that the externally reported delay is properly unset when it is no
+ // longer present.
+ state.Update(frequency_response, rtc::Optional<size_t>(), X_buffer, E2_main,
+ E2_shadow, Y2, x, EchoPathVariability(false, false), false);
+ EXPECT_FALSE(state.ExternalDelay());
+}
+
+} // namespace webrtc

Powered by Google App Engine
This is Rietveld 408576698