Index: webrtc/modules/audio_processing/aec3/adaptive_fir_filter.cc |
diff --git a/webrtc/modules/audio_processing/aec3/adaptive_fir_filter.cc b/webrtc/modules/audio_processing/aec3/adaptive_fir_filter.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..300baf8eb2a3b68c13e8de273eb952603f39f403 |
--- /dev/null |
+++ b/webrtc/modules/audio_processing/aec3/adaptive_fir_filter.cc |
@@ -0,0 +1,309 @@ |
+/* |
+ * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
+ * |
+ * Use of this source code is governed by a BSD-style license |
+ * that can be found in the LICENSE file in the root of the source |
+ * tree. An additional intellectual property rights grant can be found |
+ * in the file PATENTS. All contributing project authors may |
+ * be found in the AUTHORS file in the root of the source tree. |
+ */ |
+ |
+#include "webrtc/modules/audio_processing/aec3/adaptive_fir_filter.h" |
+ |
+#include "webrtc/typedefs.h" |
+#if defined(WEBRTC_ARCH_X86_FAMILY) |
+#include <emmintrin.h> |
+#endif |
+#include <algorithm> |
+#include <functional> |
+ |
+#include "webrtc/base/checks.h" |
+#include "webrtc/modules/audio_processing/aec3/fft_data.h" |
+ |
+namespace webrtc { |
+ |
+namespace { |
+ |
+// Constrains the a partiton of the frequency domain filter to be limited in |
+// time via setting the relevant time-domain coefficients to zero. |
+void Constrain(const Aec3Fft& fft, FftData* H) { |
+ std::array<float, kFftLength> h; |
+ fft.Ifft(*H, &h); |
+ constexpr float kScale = 1.0f / kFftLengthBy2; |
+ std::for_each(h.begin(), h.begin() + kFftLengthBy2, |
+ [kScale](float& a) { a *= kScale; }); |
+ std::fill(h.begin() + kFftLengthBy2, h.end(), 0.f); |
+ fft.Fft(&h, H); |
+} |
+ |
+// Computes and stores the frequency response of the filter. |
+void UpdateFrequencyResponse( |
+ rtc::ArrayView<const FftData> H, |
+ std::vector<std::array<float, kFftLengthBy2Plus1>>* H2) { |
+ for (size_t k = 0; k < H.size(); ++k) { |
+ std::transform(H[k].re.begin(), H[k].re.end(), H[k].im.begin(), |
+ (*H2)[k].begin(), |
+ [](float a, float b) { return a * a + b * b; }); |
+ } |
+} |
+ |
+// Computes and stores the echo return loss estimate of the filter, which is the |
+// sum of the partition frequency responses. |
+void UpdateErlEstimator( |
+ const std::vector<std::array<float, kFftLengthBy2Plus1>>& H2, |
+ std::array<float, kFftLengthBy2Plus1>* erl) { |
+ erl->fill(0.f); |
+ for (auto& H2_j : H2) { |
+ std::transform(H2_j.begin(), H2_j.end(), erl->begin(), erl->begin(), |
+ std::plus<float>()); |
+ } |
+} |
+ |
+// Resets the filter. |
+void ResetFilter(rtc::ArrayView<FftData> H) { |
+ for (auto& H_j : H) { |
+ H_j.Clear(); |
+ } |
+} |
+ |
+} // namespace |
+ |
+namespace aec3 { |
+ |
+// Adapts the filter partitions as H(t+1)=H(t)+G(t)*conj(X(t)). |
+void AdaptPartitions(const FftBuffer& X_buffer, |
+ const FftData& G, |
+ rtc::ArrayView<FftData> H) { |
+ rtc::ArrayView<const FftData> X_buffer_data = X_buffer.Buffer(); |
+ size_t index = X_buffer.Position(); |
+ for (auto& H_j : H) { |
+ const FftData& X = X_buffer_data[index]; |
+ for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) { |
+ H_j.re[k] += X.re[k] * G.re[k] + X.im[k] * G.im[k]; |
+ H_j.im[k] += X.re[k] * G.im[k] - X.im[k] * G.re[k]; |
+ } |
+ |
+ index = index < (X_buffer_data.size() - 1) ? index + 1 : 0; |
+ } |
+} |
+ |
+#if defined(WEBRTC_ARCH_X86_FAMILY) |
+// Adapts the filter partitions. (SSE2 variant) |
+void AdaptPartitions_SSE2(const FftBuffer& X_buffer, |
+ const FftData& G, |
+ rtc::ArrayView<FftData> H) { |
+ rtc::ArrayView<const FftData> X_buffer_data = X_buffer.Buffer(); |
+ const int lim1 = |
+ std::min(X_buffer_data.size() - X_buffer.Position(), H.size()); |
+ const int lim2 = H.size(); |
+ constexpr int kNumFourBinBands = kFftLengthBy2 / 4; |
+ FftData* H_j; |
+ const FftData* X; |
+ int limit; |
+ int j; |
+ for (int k = 0, n = 0; n < kNumFourBinBands; ++n, k += 4) { |
+ const __m128 G_re = _mm_loadu_ps(&G.re[k]); |
+ const __m128 G_im = _mm_loadu_ps(&G.im[k]); |
+ |
+ H_j = &H[0]; |
+ X = &X_buffer_data[X_buffer.Position()]; |
+ limit = lim1; |
+ j = 0; |
+ do { |
+ for (; j < limit; ++j, ++H_j, ++X) { |
+ const __m128 X_re = _mm_loadu_ps(&X->re[k]); |
+ const __m128 X_im = _mm_loadu_ps(&X->im[k]); |
+ const __m128 H_re = _mm_loadu_ps(&H_j->re[k]); |
+ const __m128 H_im = _mm_loadu_ps(&H_j->im[k]); |
+ const __m128 a = _mm_mul_ps(X_re, G_re); |
+ const __m128 b = _mm_mul_ps(X_im, G_im); |
+ const __m128 c = _mm_mul_ps(X_re, G_im); |
+ const __m128 d = _mm_mul_ps(X_im, G_re); |
+ const __m128 e = _mm_add_ps(a, b); |
+ const __m128 f = _mm_sub_ps(c, d); |
+ const __m128 g = _mm_add_ps(H_re, e); |
+ const __m128 h = _mm_add_ps(H_im, f); |
+ _mm_storeu_ps(&H_j->re[k], g); |
+ _mm_storeu_ps(&H_j->im[k], h); |
+ } |
+ |
+ X = &X_buffer_data[0]; |
+ limit = lim2; |
+ } while (j < lim2); |
+ } |
+ |
+ H_j = &H[0]; |
+ X = &X_buffer_data[X_buffer.Position()]; |
+ limit = lim1; |
+ j = 0; |
+ do { |
+ for (; j < limit; ++j, ++H_j, ++X) { |
+ H_j->re[kFftLengthBy2] += X->re[kFftLengthBy2] * G.re[kFftLengthBy2] + |
+ X->im[kFftLengthBy2] * G.im[kFftLengthBy2]; |
+ H_j->im[kFftLengthBy2] += X->re[kFftLengthBy2] * G.im[kFftLengthBy2] - |
+ X->im[kFftLengthBy2] * G.re[kFftLengthBy2]; |
+ } |
+ |
+ X = &X_buffer_data[0]; |
+ limit = lim2; |
+ } while (j < lim2); |
+} |
+#endif |
+ |
+// Produces the filter output. |
+void ApplyFilter(const FftBuffer& X_buffer, |
+ rtc::ArrayView<const FftData> H, |
+ FftData* S) { |
+ S->re.fill(0.f); |
+ S->im.fill(0.f); |
+ |
+ rtc::ArrayView<const FftData> X_buffer_data = X_buffer.Buffer(); |
+ size_t index = X_buffer.Position(); |
+ for (auto& H_j : H) { |
+ const FftData& X = X_buffer_data[index]; |
+ for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) { |
+ S->re[k] += X.re[k] * H_j.re[k] - X.im[k] * H_j.im[k]; |
+ S->im[k] += X.re[k] * H_j.im[k] + X.im[k] * H_j.re[k]; |
+ } |
+ index = index < (X_buffer_data.size() - 1) ? index + 1 : 0; |
+ } |
+} |
+ |
+#if defined(WEBRTC_ARCH_X86_FAMILY) |
+// Produces the filter output (SSE2 variant). |
+void ApplyFilter_SSE2(const FftBuffer& X_buffer, |
+ rtc::ArrayView<const FftData> H, |
+ FftData* S) { |
+ S->re.fill(0.f); |
+ S->im.fill(0.f); |
+ |
+ rtc::ArrayView<const FftData> X_buffer_data = X_buffer.Buffer(); |
+ const int lim1 = |
+ std::min(X_buffer_data.size() - X_buffer.Position(), H.size()); |
+ const int lim2 = H.size(); |
+ constexpr int kNumFourBinBands = kFftLengthBy2 / 4; |
+ const FftData* H_j = &H[0]; |
+ const FftData* X = &X_buffer_data[X_buffer.Position()]; |
+ |
+ int j = 0; |
+ int limit = lim1; |
+ do { |
+ for (; j < limit; ++j, ++H_j, ++X) { |
+ for (int k = 0, n = 0; n < kNumFourBinBands; ++n, k += 4) { |
+ const __m128 X_re = _mm_loadu_ps(&X->re[k]); |
+ const __m128 X_im = _mm_loadu_ps(&X->im[k]); |
+ const __m128 H_re = _mm_loadu_ps(&H_j->re[k]); |
+ const __m128 H_im = _mm_loadu_ps(&H_j->im[k]); |
+ const __m128 S_re = _mm_loadu_ps(&S->re[k]); |
+ const __m128 S_im = _mm_loadu_ps(&S->im[k]); |
+ const __m128 a = _mm_mul_ps(X_re, H_re); |
+ const __m128 b = _mm_mul_ps(X_im, H_im); |
+ const __m128 c = _mm_mul_ps(X_re, H_im); |
+ const __m128 d = _mm_mul_ps(X_im, H_re); |
+ const __m128 e = _mm_sub_ps(a, b); |
+ const __m128 f = _mm_add_ps(c, d); |
+ const __m128 g = _mm_add_ps(S_re, e); |
+ const __m128 h = _mm_add_ps(S_im, f); |
+ _mm_storeu_ps(&S->re[k], g); |
+ _mm_storeu_ps(&S->im[k], h); |
+ } |
+ } |
+ limit = lim2; |
+ X = &X_buffer_data[0]; |
+ } while (j < lim2); |
+ |
+ H_j = &H[0]; |
+ X = &X_buffer_data[X_buffer.Position()]; |
+ j = 0; |
+ limit = lim1; |
+ do { |
+ for (; j < limit; ++j, ++H_j, ++X) { |
+ S->re[kFftLengthBy2] += X->re[kFftLengthBy2] * H_j->re[kFftLengthBy2] - |
+ X->im[kFftLengthBy2] * H_j->im[kFftLengthBy2]; |
+ S->im[kFftLengthBy2] += X->re[kFftLengthBy2] * H_j->im[kFftLengthBy2] + |
+ X->im[kFftLengthBy2] * H_j->re[kFftLengthBy2]; |
+ } |
+ limit = lim2; |
+ X = &X_buffer_data[0]; |
+ } while (j < lim2); |
+} |
+#endif |
+ |
+} // namespace aec3 |
+ |
+AdaptiveFirFilter::AdaptiveFirFilter(size_t size_partitions, |
+ bool use_filter_statistics, |
+ Aec3Optimization optimization, |
+ ApmDataDumper* data_dumper) |
+ : data_dumper_(data_dumper), |
+ optimization_(optimization), |
+ H_(size_partitions) { |
+ RTC_DCHECK(data_dumper_); |
+ ResetFilter(H_); |
+ |
+ if (use_filter_statistics) { |
+ H2_.reset(new std::vector<std::array<float, kFftLengthBy2Plus1>>( |
+ size_partitions, std::array<float, kFftLengthBy2Plus1>())); |
+ for (auto H2_k : *H2_) { |
+ H2_k.fill(0.f); |
+ } |
+ |
+ erl_.reset(new std::array<float, kFftLengthBy2Plus1>()); |
+ erl_->fill(0.f); |
+ } |
+} |
+ |
+AdaptiveFirFilter::~AdaptiveFirFilter() = default; |
+ |
+void AdaptiveFirFilter::HandleEchoPathChange() { |
+ ResetFilter(H_); |
+ if (H2_) { |
+ for (auto H2_k : *H2_) { |
+ H2_k.fill(0.f); |
+ } |
+ RTC_DCHECK(erl_); |
+ erl_->fill(0.f); |
+ } |
+} |
+ |
+void AdaptiveFirFilter::Filter(const FftBuffer& X_buffer, FftData* S) const { |
+ RTC_DCHECK(S); |
+ switch (optimization_) { |
+#if defined(WEBRTC_ARCH_X86_FAMILY) |
+ case Aec3Optimization::kSse2: |
+ aec3::ApplyFilter_SSE2(X_buffer, H_, S); |
+ break; |
+#endif |
+ default: |
+ aec3::ApplyFilter(X_buffer, H_, S); |
+ } |
+} |
+ |
+void AdaptiveFirFilter::Adapt(const FftBuffer& X_buffer, const FftData& G) { |
+ // Adapt the filter. |
+ switch (optimization_) { |
+#if defined(WEBRTC_ARCH_X86_FAMILY) |
+ case Aec3Optimization::kSse2: |
+ aec3::AdaptPartitions_SSE2(X_buffer, G, H_); |
+ break; |
+#endif |
+ default: |
+ aec3::AdaptPartitions(X_buffer, G, H_); |
+ } |
+ |
+ // Constrain the filter partitions in a cyclic manner. |
+ Constrain(fft_, &H_[partition_to_constrain_]); |
+ partition_to_constrain_ = partition_to_constrain_ < (H_.size() - 1) |
+ ? partition_to_constrain_ + 1 |
+ : 0; |
+ |
+ // Optionally update the frequency response and echo return loss for the |
+ // filter. |
+ if (H2_) { |
+ RTC_DCHECK(erl_); |
+ UpdateFrequencyResponse(H_, H2_.get()); |
+ UpdateErlEstimator(*H2_, erl_.get()); |
+ } |
+} |
+ |
+} // namespace webrtc |