| Index: webrtc/modules/audio_processing/aec3/comfort_noise_generator.cc
 | 
| diff --git a/webrtc/modules/audio_processing/aec3/comfort_noise_generator.cc b/webrtc/modules/audio_processing/aec3/comfort_noise_generator.cc
 | 
| new file mode 100644
 | 
| index 0000000000000000000000000000000000000000..f630b25175eb3b22ef2ee3ee6cfa47f256a0434c
 | 
| --- /dev/null
 | 
| +++ b/webrtc/modules/audio_processing/aec3/comfort_noise_generator.cc
 | 
| @@ -0,0 +1,208 @@
 | 
| +/*
 | 
| + *  Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
 | 
| + *
 | 
| + *  Use of this source code is governed by a BSD-style license
 | 
| + *  that can be found in the LICENSE file in the root of the source
 | 
| + *  tree. An additional intellectual property rights grant can be found
 | 
| + *  in the file PATENTS.  All contributing project authors may
 | 
| + *  be found in the AUTHORS file in the root of the source tree.
 | 
| + */
 | 
| +
 | 
| +#include "webrtc/modules/audio_processing/aec3/comfort_noise_generator.h"
 | 
| +
 | 
| +#include "webrtc/typedefs.h"
 | 
| +#if defined(WEBRTC_ARCH_X86_FAMILY)
 | 
| +#include <emmintrin.h>
 | 
| +#endif
 | 
| +#include <math.h>
 | 
| +#include <algorithm>
 | 
| +#include <array>
 | 
| +#include <functional>
 | 
| +#include <numeric>
 | 
| +
 | 
| +#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
 | 
| +
 | 
| +namespace webrtc {
 | 
| +
 | 
| +namespace {
 | 
| +
 | 
| +// Creates an array of uniformly distributed variables.
 | 
| +void TableRandomValue(int16_t* vector, int16_t vector_length, uint32_t* seed) {
 | 
| +  for (int i = 0; i < vector_length; i++) {
 | 
| +    seed[0] = (seed[0] * ((int32_t)69069) + 1) & (0x80000000 - 1);
 | 
| +    vector[i] = (int16_t)(seed[0] >> 16);
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +}  // namespace
 | 
| +
 | 
| +namespace aec3 {
 | 
| +
 | 
| +#if defined(WEBRTC_ARCH_X86_FAMILY)
 | 
| +
 | 
| +void EstimateComfortNoise_SSE2(const std::array<float, kFftLengthBy2Plus1>& N2,
 | 
| +                               uint32_t* seed,
 | 
| +                               FftData* lower_band_noise,
 | 
| +                               FftData* upper_band_noise) {
 | 
| +  FftData* N_low = lower_band_noise;
 | 
| +  FftData* N_high = upper_band_noise;
 | 
| +
 | 
| +  // Compute square root spectrum.
 | 
| +  std::array<float, kFftLengthBy2Plus1> N;
 | 
| +  for (size_t k = 0; k < kFftLengthBy2; k += 4) {
 | 
| +    __m128 v = _mm_loadu_ps(&N2[k]);
 | 
| +    v = _mm_sqrt_ps(v);
 | 
| +    _mm_storeu_ps(&N[k], v);
 | 
| +  }
 | 
| +
 | 
| +  N[kFftLengthBy2] = sqrtf(N2[kFftLengthBy2]);
 | 
| +
 | 
| +  // Compute the noise level for the upper bands.
 | 
| +  constexpr float kOneByNumBands = 1.f / (kFftLengthBy2Plus1 / 2 + 1);
 | 
| +  constexpr int kFftLengthBy2Plus1By2 = kFftLengthBy2Plus1 / 2;
 | 
| +  const float high_band_noise_level =
 | 
| +      std::accumulate(N.begin() + kFftLengthBy2Plus1By2, N.end(), 0.f) *
 | 
| +      kOneByNumBands;
 | 
| +
 | 
| +  // Generate complex noise.
 | 
| +  std::array<int16_t, kFftLengthBy2 - 1> random_values_int;
 | 
| +  TableRandomValue(random_values_int.data(), random_values_int.size(), seed);
 | 
| +
 | 
| +  std::array<float, kFftLengthBy2 - 1> sin;
 | 
| +  std::array<float, kFftLengthBy2 - 1> cos;
 | 
| +  constexpr float kScale = 6.28318530717959f / 32768.0f;
 | 
| +  std::transform(random_values_int.begin(), random_values_int.end(),
 | 
| +                 sin.begin(), [&](int16_t a) { return -sinf(kScale * a); });
 | 
| +  std::transform(random_values_int.begin(), random_values_int.end(),
 | 
| +                 cos.begin(), [&](int16_t a) { return cosf(kScale * a); });
 | 
| +
 | 
| +  // Form low-frequency noise via spectral shaping.
 | 
| +  N_low->re[0] = N_low->re[kFftLengthBy2] = N_high->re[0] =
 | 
| +      N_high->re[kFftLengthBy2] = 0.f;
 | 
| +  std::transform(cos.begin(), cos.end(), N.begin() + 1, N_low->re.begin() + 1,
 | 
| +                 std::multiplies<float>());
 | 
| +  std::transform(sin.begin(), sin.end(), N.begin() + 1, N_low->im.begin() + 1,
 | 
| +                 std::multiplies<float>());
 | 
| +
 | 
| +  // Form the high-frequency noise via simple levelling.
 | 
| +  std::transform(cos.begin(), cos.end(), N_high->re.begin() + 1,
 | 
| +                 [&](float a) { return high_band_noise_level * a; });
 | 
| +  std::transform(sin.begin(), sin.end(), N_high->im.begin() + 1,
 | 
| +                 [&](float a) { return high_band_noise_level * a; });
 | 
| +}
 | 
| +
 | 
| +#endif
 | 
| +
 | 
| +void EstimateComfortNoise(const std::array<float, kFftLengthBy2Plus1>& N2,
 | 
| +                          uint32_t* seed,
 | 
| +                          FftData* lower_band_noise,
 | 
| +                          FftData* upper_band_noise) {
 | 
| +  FftData* N_low = lower_band_noise;
 | 
| +  FftData* N_high = upper_band_noise;
 | 
| +
 | 
| +  // Compute square root spectrum.
 | 
| +  std::array<float, kFftLengthBy2Plus1> N;
 | 
| +  std::transform(N2.begin(), N2.end(), N.begin(),
 | 
| +                 [](float a) { return sqrtf(a); });
 | 
| +
 | 
| +  // Compute the noise level for the upper bands.
 | 
| +  constexpr float kOneByNumBands = 1.f / (kFftLengthBy2Plus1 / 2 + 1);
 | 
| +  constexpr int kFftLengthBy2Plus1By2 = kFftLengthBy2Plus1 / 2;
 | 
| +  const float high_band_noise_level =
 | 
| +      std::accumulate(N.begin() + kFftLengthBy2Plus1By2, N.end(), 0.f) *
 | 
| +      kOneByNumBands;
 | 
| +
 | 
| +  // Generate complex noise.
 | 
| +  std::array<int16_t, kFftLengthBy2 - 1> random_values_int;
 | 
| +  TableRandomValue(random_values_int.data(), random_values_int.size(), seed);
 | 
| +
 | 
| +  std::array<float, kFftLengthBy2 - 1> sin;
 | 
| +  std::array<float, kFftLengthBy2 - 1> cos;
 | 
| +  constexpr float kScale = 6.28318530717959f / 32768.0f;
 | 
| +  std::transform(random_values_int.begin(), random_values_int.end(),
 | 
| +                 sin.begin(), [&](int16_t a) { return -sinf(kScale * a); });
 | 
| +  std::transform(random_values_int.begin(), random_values_int.end(),
 | 
| +                 cos.begin(), [&](int16_t a) { return cosf(kScale * a); });
 | 
| +
 | 
| +  // Form low-frequency noise via spectral shaping.
 | 
| +  N_low->re[0] = N_low->re[kFftLengthBy2] = N_high->re[0] =
 | 
| +      N_high->re[kFftLengthBy2] = 0.f;
 | 
| +  std::transform(cos.begin(), cos.end(), N.begin() + 1, N_low->re.begin() + 1,
 | 
| +                 std::multiplies<float>());
 | 
| +  std::transform(sin.begin(), sin.end(), N.begin() + 1, N_low->im.begin() + 1,
 | 
| +                 std::multiplies<float>());
 | 
| +
 | 
| +  // Form the high-frequency noise via simple levelling.
 | 
| +  std::transform(cos.begin(), cos.end(), N_high->re.begin() + 1,
 | 
| +                 [&](float a) { return high_band_noise_level * a; });
 | 
| +  std::transform(sin.begin(), sin.end(), N_high->im.begin() + 1,
 | 
| +                 [&](float a) { return high_band_noise_level * a; });
 | 
| +}
 | 
| +
 | 
| +}  // namespace aec3
 | 
| +
 | 
| +ComfortNoiseGenerator::ComfortNoiseGenerator(Aec3Optimization optimization)
 | 
| +    : optimization_(optimization),
 | 
| +      seed_(42),
 | 
| +      N2_initial_(new std::array<float, kFftLengthBy2Plus1>()) {
 | 
| +  N2_initial_->fill(0.f);
 | 
| +  Y2_smoothed_.fill(0.f);
 | 
| +  N2_.fill(1.0e6f);
 | 
| +}
 | 
| +
 | 
| +ComfortNoiseGenerator::~ComfortNoiseGenerator() = default;
 | 
| +
 | 
| +void ComfortNoiseGenerator::Compute(
 | 
| +    const AecState& aec_state,
 | 
| +    const std::array<float, kFftLengthBy2Plus1>& capture_spectrum,
 | 
| +    FftData* lower_band_noise,
 | 
| +    FftData* upper_band_noise) {
 | 
| +  RTC_DCHECK(lower_band_noise);
 | 
| +  RTC_DCHECK(upper_band_noise);
 | 
| +  const auto& Y2 = capture_spectrum;
 | 
| +
 | 
| +  if (!aec_state.SaturatedCapture()) {
 | 
| +    // Smooth Y2.
 | 
| +    std::transform(Y2_smoothed_.begin(), Y2_smoothed_.end(), Y2.begin(),
 | 
| +                   Y2_smoothed_.begin(),
 | 
| +                   [](float a, float b) { return a + 0.1f * (b - a); });
 | 
| +
 | 
| +    if (N2_counter_ > 50) {
 | 
| +      // Update N2 from Y2_smoothed.
 | 
| +      std::transform(N2_.begin(), N2_.end(), Y2_smoothed_.begin(), N2_.begin(),
 | 
| +                     [](float a, float b) {
 | 
| +                       return b < a ? (0.9f * b + 0.1f * a) * 1.0002f
 | 
| +                                    : a * 1.0002f;
 | 
| +                     });
 | 
| +    }
 | 
| +
 | 
| +    if (N2_initial_) {
 | 
| +      if (++N2_counter_ == 1000) {
 | 
| +        N2_initial_.reset();
 | 
| +      } else {
 | 
| +        // Compute the N2_initial from N2.
 | 
| +        std::transform(
 | 
| +            N2_.begin(), N2_.end(), N2_initial_->begin(), N2_initial_->begin(),
 | 
| +            [](float a, float b) { return a > b ? b + 0.001f * (a - b) : a; });
 | 
| +      }
 | 
| +    }
 | 
| +  }
 | 
| +
 | 
| +  // Choose N2 estimate to use.
 | 
| +  const std::array<float, kFftLengthBy2Plus1>& N2 =
 | 
| +      N2_initial_ ? *N2_initial_ : N2_;
 | 
| +
 | 
| +  switch (optimization_) {
 | 
| +#if defined(WEBRTC_ARCH_X86_FAMILY)
 | 
| +    case Aec3Optimization::kSse2:
 | 
| +      aec3::EstimateComfortNoise_SSE2(N2, &seed_, lower_band_noise,
 | 
| +                                      upper_band_noise);
 | 
| +      break;
 | 
| +#endif
 | 
| +    default:
 | 
| +      aec3::EstimateComfortNoise(N2, &seed_, lower_band_noise,
 | 
| +                                 upper_band_noise);
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +}  // namespace webrtc
 | 
| 
 |