| Index: webrtc/modules/audio_processing/aec3/adaptive_fir_filter_unittest.cc
|
| diff --git a/webrtc/modules/audio_processing/aec3/adaptive_fir_filter_unittest.cc b/webrtc/modules/audio_processing/aec3/adaptive_fir_filter_unittest.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..d46eba571b88f0ace7be72d711eef3fcf4f353b3
|
| --- /dev/null
|
| +++ b/webrtc/modules/audio_processing/aec3/adaptive_fir_filter_unittest.cc
|
| @@ -0,0 +1,219 @@
|
| +/*
|
| + * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license
|
| + * that can be found in the LICENSE file in the root of the source
|
| + * tree. An additional intellectual property rights grant can be found
|
| + * in the file PATENTS. All contributing project authors may
|
| + * be found in the AUTHORS file in the root of the source tree.
|
| + */
|
| +
|
| +#include "webrtc/modules/audio_processing/aec3/adaptive_fir_filter.h"
|
| +
|
| +#include <algorithm>
|
| +#include <numeric>
|
| +#include <string>
|
| +#include "webrtc/typedefs.h"
|
| +#if defined(WEBRTC_ARCH_X86_FAMILY)
|
| +#include <emmintrin.h>
|
| +#endif
|
| +#include "webrtc/base/arraysize.h"
|
| +#include "webrtc/base/random.h"
|
| +#include "webrtc/modules/audio_processing/aec3/aec_state.h"
|
| +#include "webrtc/modules/audio_processing/aec3/aec3_fft.h"
|
| +#include "webrtc/modules/audio_processing/aec3/render_signal_analyzer.h"
|
| +#include "webrtc/modules/audio_processing/aec3/shadow_filter_update_gain.h"
|
| +#include "webrtc/modules/audio_processing/logging/apm_data_dumper.h"
|
| +#include "webrtc/modules/audio_processing/test/echo_canceller_test_tools.h"
|
| +#include "webrtc/system_wrappers/include/cpu_features_wrapper.h"
|
| +#include "webrtc/test/gtest.h"
|
| +
|
| +namespace webrtc {
|
| +namespace aec3 {
|
| +namespace {
|
| +
|
| +std::string ProduceDebugText(size_t delay) {
|
| + std::ostringstream ss;
|
| + ss << ", Delay: " << delay;
|
| + return ss.str();
|
| +}
|
| +
|
| +} // namespace
|
| +
|
| +#if defined(WEBRTC_ARCH_X86_FAMILY)
|
| +// Verifies that the optimized methods are bitexact to their reference
|
| +// counterparts.
|
| +TEST(AdaptiveFirFilter, TestOptimizations) {
|
| + bool use_sse2 = (WebRtc_GetCPUInfo(kSSE2) != 0);
|
| + if (use_sse2) {
|
| + FftBuffer X_buffer(Aec3Optimization::kNone, 12, std::vector<size_t>(1, 12));
|
| + std::array<float, kBlockSize> x_old;
|
| + x_old.fill(0.f);
|
| + Random random_generator(42U);
|
| + std::vector<float> x(kBlockSize, 0.f);
|
| + FftData X;
|
| + FftData S_C;
|
| + FftData S_SSE2;
|
| + FftData G;
|
| + Aec3Fft fft;
|
| + std::vector<FftData> H_C(10);
|
| + std::vector<FftData> H_SSE2(10);
|
| + for (auto& H_j : H_C) {
|
| + H_j.Clear();
|
| + }
|
| + for (auto& H_j : H_SSE2) {
|
| + H_j.Clear();
|
| + }
|
| +
|
| + for (size_t k = 0; k < 500; ++k) {
|
| + RandomizeSampleVector(&random_generator, x);
|
| + fft.PaddedFft(x, x_old, &X);
|
| + X_buffer.Insert(X);
|
| +
|
| + ApplyFilter_SSE2(X_buffer, H_SSE2, &S_SSE2);
|
| + ApplyFilter(X_buffer, H_C, &S_C);
|
| + for (size_t j = 0; j < S_C.re.size(); ++j) {
|
| + EXPECT_FLOAT_EQ(S_C.re[j], S_SSE2.re[j]);
|
| + EXPECT_FLOAT_EQ(S_C.im[j], S_SSE2.im[j]);
|
| + }
|
| +
|
| + std::for_each(G.re.begin(), G.re.end(),
|
| + [&](float& a) { a = random_generator.Rand<float>(); });
|
| + std::for_each(G.im.begin(), G.im.end(),
|
| + [&](float& a) { a = random_generator.Rand<float>(); });
|
| +
|
| + AdaptPartitions_SSE2(X_buffer, G, H_SSE2);
|
| + AdaptPartitions(X_buffer, G, H_C);
|
| +
|
| + for (size_t k = 0; k < H_C.size(); ++k) {
|
| + for (size_t j = 0; j < H_C[k].re.size(); ++j) {
|
| + EXPECT_FLOAT_EQ(H_C[k].re[j], H_SSE2[k].re[j]);
|
| + EXPECT_FLOAT_EQ(H_C[k].im[j], H_SSE2[k].im[j]);
|
| + }
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +#endif
|
| +
|
| +#if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
|
| +// Verifies that the check for non-null data dumper works.
|
| +TEST(AdaptiveFirFilter, NullDataDumper) {
|
| + EXPECT_DEATH(AdaptiveFirFilter(9, true, DetectOptimization(), nullptr), "");
|
| +}
|
| +
|
| +// Verifies that the check for non-null filter output works.
|
| +TEST(AdaptiveFirFilter, NullFilterOutput) {
|
| + ApmDataDumper data_dumper(42);
|
| + AdaptiveFirFilter filter(9, true, DetectOptimization(), &data_dumper);
|
| + FftBuffer X_buffer(Aec3Optimization::kNone, filter.SizePartitions(),
|
| + std::vector<size_t>(1, filter.SizePartitions()));
|
| + EXPECT_DEATH(filter.Filter(X_buffer, nullptr), "");
|
| +}
|
| +
|
| +// Verifies that the check for whether filter statistics are being generated
|
| +// works when retrieving the ERL.
|
| +TEST(AdaptiveFirFilter, ErlAccessWhenNoFilterStatistics) {
|
| + ApmDataDumper data_dumper(42);
|
| + AdaptiveFirFilter filter(9, false, DetectOptimization(), &data_dumper);
|
| + EXPECT_DEATH(filter.Erl(), "");
|
| +}
|
| +
|
| +// Verifies that the check for whether filter statistics are being generated
|
| +// works when retrieving the filter frequencyResponse.
|
| +TEST(AdaptiveFirFilter, FilterFrequencyResponseAccessWhenNoFilterStatistics) {
|
| + ApmDataDumper data_dumper(42);
|
| + AdaptiveFirFilter filter(9, false, DetectOptimization(), &data_dumper);
|
| + EXPECT_DEATH(filter.FilterFrequencyResponse(), "");
|
| +}
|
| +
|
| +#endif
|
| +
|
| +// Verifies that the filter statistics can be accessed when filter statistics
|
| +// are turned on.
|
| +TEST(AdaptiveFirFilter, FilterStatisticsAccess) {
|
| + ApmDataDumper data_dumper(42);
|
| + AdaptiveFirFilter filter(9, true, DetectOptimization(), &data_dumper);
|
| + filter.Erl();
|
| + filter.FilterFrequencyResponse();
|
| +}
|
| +
|
| +// Verifies that the filter size if correctly repported.
|
| +TEST(AdaptiveFirFilter, FilterSize) {
|
| + ApmDataDumper data_dumper(42);
|
| + for (size_t filter_size = 1; filter_size < 5; ++filter_size) {
|
| + AdaptiveFirFilter filter(filter_size, false, DetectOptimization(),
|
| + &data_dumper);
|
| + EXPECT_EQ(filter_size, filter.SizePartitions());
|
| + }
|
| +}
|
| +
|
| +// Verifies that the filter is being able to properly filter a signal and to
|
| +// adapt its coefficients.
|
| +TEST(AdaptiveFirFilter, FilterAndAdapt) {
|
| + constexpr size_t kNumBlocksToProcess = 500;
|
| + ApmDataDumper data_dumper(42);
|
| + AdaptiveFirFilter filter(9, true, DetectOptimization(), &data_dumper);
|
| + Aec3Fft fft;
|
| + FftBuffer X_buffer(Aec3Optimization::kNone, filter.SizePartitions(),
|
| + std::vector<size_t>(1, filter.SizePartitions()));
|
| + std::array<float, kBlockSize> x_old;
|
| + x_old.fill(0.f);
|
| + ShadowFilterUpdateGain gain;
|
| + Random random_generator(42U);
|
| + std::vector<float> x(kBlockSize, 0.f);
|
| + std::vector<float> y(kBlockSize, 0.f);
|
| + AecState aec_state;
|
| + RenderSignalAnalyzer render_signal_analyzer;
|
| + FftData X;
|
| + std::vector<float> e(kBlockSize, 0.f);
|
| + std::array<float, kFftLength> s;
|
| + FftData S;
|
| + FftData G;
|
| + FftData E;
|
| + std::array<float, kFftLengthBy2Plus1> Y2;
|
| + std::array<float, kFftLengthBy2Plus1> E2_main;
|
| + std::array<float, kFftLengthBy2Plus1> E2_shadow;
|
| + Y2.fill(0.f);
|
| + E2_main.fill(0.f);
|
| + E2_shadow.fill(0.f);
|
| +
|
| + constexpr float kScale = 1.0f / kFftLengthBy2;
|
| +
|
| + for (size_t delay_samples : {0, 64, 150, 200, 301}) {
|
| + DelayBuffer<float> delay_buffer(delay_samples);
|
| + SCOPED_TRACE(ProduceDebugText(delay_samples));
|
| + for (size_t k = 0; k < kNumBlocksToProcess; ++k) {
|
| + RandomizeSampleVector(&random_generator, x);
|
| + delay_buffer.Delay(x, y);
|
| +
|
| + fft.PaddedFft(x, x_old, &X);
|
| + X_buffer.Insert(X);
|
| + render_signal_analyzer.Update(X_buffer, aec_state.FilterDelay());
|
| +
|
| + filter.Filter(X_buffer, &S);
|
| + fft.Ifft(S, &s);
|
| + std::transform(y.begin(), y.end(), s.begin() + kFftLengthBy2, e.begin(),
|
| + [&](float a, float b) { return a - b * kScale; });
|
| + std::for_each(e.begin(), e.end(), [](float& a) {
|
| + a = std::max(std::min(a, 32767.0f), -32768.0f);
|
| + });
|
| + fft.ZeroPaddedFft(e, &E);
|
| +
|
| + gain.Compute(X_buffer, render_signal_analyzer, E, filter.SizePartitions(),
|
| + false, &G);
|
| + filter.Adapt(X_buffer, G);
|
| + aec_state.Update(filter.FilterFrequencyResponse(),
|
| + rtc::Optional<size_t>(), X_buffer, E2_main, E2_shadow,
|
| + Y2, x, EchoPathVariability(false, false), false);
|
| + }
|
| + // Verify that the filter is able to perform well.
|
| + EXPECT_LT(1000 * std::inner_product(e.begin(), e.end(), e.begin(), 0.f),
|
| + std::inner_product(y.begin(), y.end(), y.begin(), 0.f));
|
| + ASSERT_TRUE(aec_state.FilterDelay());
|
| + EXPECT_EQ(delay_samples / kBlockSize, *aec_state.FilterDelay());
|
| + }
|
| +}
|
| +} // namespace aec3
|
| +} // namespace webrtc
|
|
|