Chromium Code Reviews| Index: webrtc/modules/audio_processing/aec3/suppression_filter.cc |
| diff --git a/webrtc/modules/audio_processing/aec3/suppression_filter.cc b/webrtc/modules/audio_processing/aec3/suppression_filter.cc |
| new file mode 100644 |
| index 0000000000000000000000000000000000000000..6eef3546da590172016f25ed771e1960656dadfa |
| --- /dev/null |
| +++ b/webrtc/modules/audio_processing/aec3/suppression_filter.cc |
| @@ -0,0 +1,180 @@ |
| +/* |
| + * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
| + * |
| + * Use of this source code is governed by a BSD-style license |
| + * that can be found in the LICENSE file in the root of the source |
| + * tree. An additional intellectual property rights grant can be found |
| + * in the file PATENTS. All contributing project authors may |
| + * be found in the AUTHORS file in the root of the source tree. |
| + */ |
| + |
| +#include "webrtc/modules/audio_processing/aec3/suppression_filter.h" |
| + |
| +#include <math.h> |
| +#include <algorithm> |
| +#include <cstring> |
| +#include <functional> |
| +#include <numeric> |
| + |
| +#include "webrtc/modules/audio_processing/utility/ooura_fft.h" |
| + |
| +namespace webrtc { |
| +namespace { |
| + |
| +// Matlab code to produce table: |
| +// win = sqrt(hanning(63)); win = [0 ; win(1:32)]; |
| +// fprintf(1, '\t%.14f, %.14f, %.14f,\n', win); |
|
aleloi
2017/02/22 16:20:31
This seems to be a few more than 32 numbers. It al
peah-webrtc
2017/02/22 23:51:40
True. Good find!
Done.
|
| +const float kSqrtHanning[kFftLength] = { |
| + 0.00000000000000f, 0.02454122852291f, 0.04906767432742f, 0.07356456359967f, |
| + 0.09801714032956f, 0.12241067519922f, 0.14673047445536f, 0.17096188876030f, |
| + 0.19509032201613f, 0.21910124015687f, 0.24298017990326f, 0.26671275747490f, |
| + 0.29028467725446f, 0.31368174039889f, 0.33688985339222f, 0.35989503653499f, |
| + 0.38268343236509f, 0.40524131400499f, 0.42755509343028f, 0.44961132965461f, |
| + 0.47139673682600f, 0.49289819222978f, 0.51410274419322f, 0.53499761988710f, |
| + 0.55557023301960f, 0.57580819141785f, 0.59569930449243f, 0.61523159058063f, |
| + 0.63439328416365f, 0.65317284295378f, 0.67155895484702f, 0.68954054473707f, |
| + 0.70710678118655f, 0.72424708295147f, 0.74095112535496f, 0.75720884650648f, |
| + 0.77301045336274f, 0.78834642762661f, 0.80320753148064f, 0.81758481315158f, |
| + 0.83146961230255f, 0.84485356524971f, 0.85772861000027f, 0.87008699110871f, |
| + 0.88192126434835f, 0.89322430119552f, 0.90398929312344f, 0.91420975570353f, |
| + 0.92387953251129f, 0.93299279883474f, 0.94154406518302f, 0.94952818059304f, |
| + 0.95694033573221f, 0.96377606579544f, 0.97003125319454f, 0.97570213003853f, |
| + 0.98078528040323f, 0.98527764238894f, 0.98917650996478f, 0.99247953459871f, |
| + 0.99518472667220f, 0.99729045667869f, 0.99879545620517f, 0.99969881869620f, |
| + 1.00000000000000f, 0.99969881869620f, 0.99879545620517f, 0.99729045667869f, |
| + 0.99518472667220f, 0.99247953459871f, 0.98917650996478f, 0.98527764238894f, |
| + 0.98078528040323f, 0.97570213003853f, 0.97003125319454f, 0.96377606579544f, |
| + 0.95694033573221f, 0.94952818059304f, 0.94154406518302f, 0.93299279883474f, |
| + 0.92387953251129f, 0.91420975570353f, 0.90398929312344f, 0.89322430119552f, |
| + 0.88192126434835f, 0.87008699110871f, 0.85772861000027f, 0.84485356524971f, |
| + 0.83146961230255f, 0.81758481315158f, 0.80320753148064f, 0.78834642762661f, |
| + 0.77301045336274f, 0.75720884650648f, 0.74095112535496f, 0.72424708295147f, |
| + 0.70710678118655f, 0.68954054473707f, 0.67155895484702f, 0.65317284295378f, |
| + 0.63439328416365f, 0.61523159058063f, 0.59569930449243f, 0.57580819141785f, |
| + 0.55557023301960f, 0.53499761988710f, 0.51410274419322f, 0.49289819222978f, |
| + 0.47139673682600f, 0.44961132965461f, 0.42755509343028f, 0.40524131400499f, |
| + 0.38268343236509f, 0.35989503653499f, 0.33688985339222f, 0.31368174039889f, |
| + 0.29028467725446f, 0.26671275747490f, 0.24298017990326f, 0.21910124015687f, |
| + 0.19509032201613f, 0.17096188876030f, 0.14673047445536f, 0.12241067519922f, |
| + 0.09801714032956f, 0.07356456359967f, 0.04906767432742f, 0.02454122852291f}; |
| + |
| +} // namespace |
| + |
| +SuppressionFilter::SuppressionFilter(int sample_rate_hz) |
| + : sample_rate_hz_(sample_rate_hz), |
| + e_output_old_(NumBandsForRate(sample_rate_hz_)) { |
| + RTC_DCHECK(ValidFullBandRate(sample_rate_hz_)); |
| + e_input_old_.fill(0.f); |
| + std::for_each(e_output_old_.begin(), e_output_old_.end(), |
| + [](std::array<float, kFftLengthBy2>& a) { a.fill(0.f); }); |
| +} |
| + |
| +SuppressionFilter::~SuppressionFilter() = default; |
| + |
| +void SuppressionFilter::ApplyGain( |
| + const FftData& comfort_noise, |
| + const FftData& comfort_noise_high_band, |
| + const std::array<float, kFftLengthBy2Plus1>& suppression_gain, |
| + std::vector<std::vector<float>>* e) { |
| + RTC_DCHECK(e); |
| + RTC_DCHECK_EQ(e->size(), NumBandsForRate(sample_rate_hz_)); |
| + FftData E; |
| + std::array<float, kFftLength> e_extended; |
| + constexpr float kIfftNormalization = 2.f / kFftLength; |
| + |
| + // Analysis filterbank. |
| + std::transform(e_input_old_.begin(), e_input_old_.end(), |
| + std::begin(kSqrtHanning), e_extended.begin(), |
| + std::multiplies<float>()); |
| + std::transform((*e)[0].begin(), (*e)[0].end(), |
| + std::begin(kSqrtHanning) + kFftLengthBy2, |
| + e_extended.begin() + kFftLengthBy2, std::multiplies<float>()); |
| + std::copy((*e)[0].begin(), (*e)[0].end(), e_input_old_.begin()); |
| + fft_.Fft(&e_extended, &E); |
| + |
| + // Apply gain. |
| + std::transform(suppression_gain.begin(), suppression_gain.end(), E.re.begin(), |
| + E.re.begin(), std::multiplies<float>()); |
| + std::transform(suppression_gain.begin(), suppression_gain.end(), E.im.begin(), |
| + E.im.begin(), std::multiplies<float>()); |
| + |
| + // Compute and add the comfort noise. |
| + std::array<float, kFftLengthBy2Plus1> scaled_comfort_noise; |
| + std::transform(suppression_gain.begin(), suppression_gain.end(), |
| + comfort_noise.re.begin(), scaled_comfort_noise.begin(), |
| + [](float a, float b) { return std::max(1.f - a, 0.f) * b; }); |
| + std::transform(scaled_comfort_noise.begin(), scaled_comfort_noise.end(), |
| + E.re.begin(), E.re.begin(), std::plus<float>()); |
| + std::transform(suppression_gain.begin(), suppression_gain.end(), |
| + comfort_noise.im.begin(), scaled_comfort_noise.begin(), |
| + [](float a, float b) { return std::max(1.f - a, 0.f) * b; }); |
| + std::transform(scaled_comfort_noise.begin(), scaled_comfort_noise.end(), |
| + E.im.begin(), E.im.begin(), std::plus<float>()); |
| + |
| + // Synthesis filterbank. |
| + fft_.Ifft(E, &e_extended); |
| + std::transform(e_output_old_[0].begin(), e_output_old_[0].end(), |
| + std::begin(kSqrtHanning) + kFftLengthBy2, (*e)[0].begin(), |
| + [&](float a, float b) { return kIfftNormalization * a * b; }); |
| + std::transform(e_extended.begin(), e_extended.begin() + kFftLengthBy2, |
| + std::begin(kSqrtHanning), e_extended.begin(), |
| + [&](float a, float b) { return kIfftNormalization * a * b; }); |
| + std::transform((*e)[0].begin(), (*e)[0].end(), e_extended.begin(), |
| + (*e)[0].begin(), std::plus<float>()); |
| + std::for_each((*e)[0].begin(), (*e)[0].end(), [](float& x_k) { |
| + x_k = std::max(std::min(x_k, 32767.0f), -32768.0f); |
| + }); |
| + std::copy(e_extended.begin() + kFftLengthBy2, e_extended.begin() + kFftLength, |
| + std::begin(e_output_old_[0])); |
| + |
| + if (e->size() > 1) { |
| + // Form time-domain high-band noise. |
| + std::array<float, kFftLength> time_domain_high_band_noise; |
| + std::transform(comfort_noise_high_band.re.begin(), |
| + comfort_noise_high_band.re.end(), E.re.begin(), |
| + [&](float a) { return kIfftNormalization * a; }); |
| + std::transform(comfort_noise_high_band.im.begin(), |
| + comfort_noise_high_band.im.end(), E.im.begin(), |
| + [&](float a) { return kIfftNormalization * a; }); |
| + fft_.Ifft(E, &time_domain_high_band_noise); |
| + |
| + // Scale and apply the noise to the signals. |
| + // TODO(peah): Ensure that the high bands are properly delayed. |
| + constexpr int kNumBandsAveragingUpperGain = kFftLengthBy2 / 4; |
| + constexpr float kOneByNumBandsAveragingUpperGain = |
| + 1.f / kNumBandsAveragingUpperGain; |
| + float high_bands_gain = |
| + std::accumulate(suppression_gain.end() - kNumBandsAveragingUpperGain, |
| + suppression_gain.end(), 0.f) * |
| + kOneByNumBandsAveragingUpperGain; |
| + |
| + float high_bands_noise_scaling = |
| + 0.4f * std::max(1.f - high_bands_gain * high_bands_gain, 0.f); |
| + |
| + std::transform( |
| + (*e)[1].begin(), (*e)[1].end(), time_domain_high_band_noise.begin(), |
| + (*e)[1].begin(), [&](float a, float b) { |
| + return std::max( |
| + std::min(b * high_bands_noise_scaling + high_bands_gain * a, |
| + 32767.0f), |
| + -32768.0f); |
| + }); |
| + |
| + if (e->size() > 2) { |
| + RTC_DCHECK_EQ(3, e->size()); |
| + std::for_each((*e)[2].begin(), (*e)[2].end(), [&](float& a) { |
| + a = std::max(std::min(a * high_bands_gain, 32767.0f), -32768.0f); |
| + }); |
| + } |
| + |
| + std::array<float, kFftLengthBy2> tmp; |
| + for (size_t k = 1; k < e->size(); ++k) { |
| + std::copy((*e)[k].begin(), (*e)[k].end(), tmp.begin()); |
| + std::copy(e_output_old_[k].begin(), e_output_old_[k].end(), |
| + (*e)[k].begin()); |
| + std::copy(tmp.begin(), tmp.end(), e_output_old_[k].begin()); |
| + } |
| + } |
| +} |
| + |
| +} // namespace webrtc |