| Index: webrtc/modules/audio_processing/aec3/shadow_filter_update_gain_unittest.cc
|
| diff --git a/webrtc/modules/audio_processing/aec3/shadow_filter_update_gain_unittest.cc b/webrtc/modules/audio_processing/aec3/shadow_filter_update_gain_unittest.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..ab98eefebb53a4a686395fceece3a2b6ebd7db17
|
| --- /dev/null
|
| +++ b/webrtc/modules/audio_processing/aec3/shadow_filter_update_gain_unittest.cc
|
| @@ -0,0 +1,187 @@
|
| +/*
|
| + * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license
|
| + * that can be found in the LICENSE file in the root of the source
|
| + * tree. An additional intellectual property rights grant can be found
|
| + * in the file PATENTS. All contributing project authors may
|
| + * be found in the AUTHORS file in the root of the source tree.
|
| + */
|
| +
|
| +#include "webrtc/modules/audio_processing/aec3/shadow_filter_update_gain.h"
|
| +
|
| +#include <algorithm>
|
| +#include <numeric>
|
| +#include <string>
|
| +#include <vector>
|
| +
|
| +#include "webrtc/base/random.h"
|
| +#include "webrtc/modules/audio_processing/aec3/adaptive_fir_filter.h"
|
| +#include "webrtc/modules/audio_processing/aec3/aec_state.h"
|
| +#include "webrtc/modules/audio_processing/aec3/aec3_common.h"
|
| +#include "webrtc/modules/audio_processing/test/echo_canceller_test_tools.h"
|
| +#include "webrtc/test/gtest.h"
|
| +
|
| +namespace webrtc {
|
| +namespace {
|
| +
|
| +// Method for performing the simulations needed to test the main filter update
|
| +// gain functionality.
|
| +void RunFilterUpdateTest(int num_blocks_to_process,
|
| + size_t delay_samples,
|
| + const std::vector<int>& blocks_with_saturation,
|
| + std::array<float, kBlockSize>* e_last_block,
|
| + std::array<float, kBlockSize>* y_last_block,
|
| + FftData* G_last_block) {
|
| + ApmDataDumper data_dumper(42);
|
| + AdaptiveFirFilter main_filter(9, true, DetectOptimization(), &data_dumper);
|
| + AdaptiveFirFilter shadow_filter(9, true, DetectOptimization(), &data_dumper);
|
| + Aec3Fft fft;
|
| + FftBuffer X_buffer(Aec3Optimization::kNone, main_filter.SizePartitions(),
|
| + std::vector<size_t>(1, main_filter.SizePartitions()));
|
| + std::array<float, kBlockSize> x_old;
|
| + x_old.fill(0.f);
|
| + ShadowFilterUpdateGain shadow_gain;
|
| + Random random_generator(42U);
|
| + std::vector<float> x(kBlockSize, 0.f);
|
| + std::vector<float> y(kBlockSize, 0.f);
|
| + AecState aec_state;
|
| + RenderSignalAnalyzer render_signal_analyzer;
|
| + FftData X;
|
| + std::array<float, kFftLength> s;
|
| + FftData S;
|
| + FftData G;
|
| + FftData E_shadow;
|
| + std::array<float, kBlockSize> e_shadow;
|
| +
|
| + constexpr float kScale = 1.0f / kFftLengthBy2;
|
| +
|
| + DelayBuffer<float> delay_buffer(delay_samples);
|
| + for (int k = 0; k < num_blocks_to_process; ++k) {
|
| + // Handle saturation.
|
| + bool saturation =
|
| + std::find(blocks_with_saturation.begin(), blocks_with_saturation.end(),
|
| + k) != blocks_with_saturation.end();
|
| +
|
| + // Create the render signal.
|
| + RandomizeSampleVector(&random_generator, x);
|
| + delay_buffer.Delay(x, y);
|
| + fft.PaddedFft(x, x_old, &X);
|
| + X_buffer.Insert(X);
|
| + render_signal_analyzer.Update(
|
| + X_buffer, rtc::Optional<size_t>(delay_samples / kBlockSize));
|
| +
|
| + shadow_filter.Filter(X_buffer, &S);
|
| + fft.Ifft(S, &s);
|
| + std::transform(y.begin(), y.end(), s.begin() + kFftLengthBy2,
|
| + e_shadow.begin(),
|
| + [&](float a, float b) { return a - b * kScale; });
|
| + std::for_each(e_shadow.begin(), e_shadow.end(), [](float& a) {
|
| + a = std::max(std::min(a, 32767.0f), -32768.0f);
|
| + });
|
| + fft.ZeroPaddedFft(e_shadow, &E_shadow);
|
| +
|
| + shadow_gain.Compute(X_buffer, render_signal_analyzer, E_shadow,
|
| + shadow_filter.SizePartitions(), saturation, &G);
|
| + shadow_filter.Adapt(X_buffer, G);
|
| + }
|
| +
|
| + std::copy(e_shadow.begin(), e_shadow.end(), e_last_block->begin());
|
| + std::copy(y.begin(), y.end(), y_last_block->begin());
|
| + std::copy(G.re.begin(), G.re.end(), G_last_block->re.begin());
|
| + std::copy(G.im.begin(), G.im.end(), G_last_block->im.begin());
|
| +}
|
| +
|
| +std::string ProduceDebugText(size_t delay) {
|
| + std::ostringstream ss;
|
| + ss << ", Delay: " << delay;
|
| + return ss.str();
|
| +}
|
| +
|
| +} // namespace
|
| +
|
| +#if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
|
| +
|
| +// Verifies that the check for non-null output gain parameter works.
|
| +TEST(ShadowFilterUpdateGain, NullDataOutputGain) {
|
| + ApmDataDumper data_dumper(42);
|
| + FftBuffer X_buffer(Aec3Optimization::kNone, 1, std::vector<size_t>(1, 1));
|
| + RenderSignalAnalyzer analyzer;
|
| + FftData E;
|
| + ShadowFilterUpdateGain gain;
|
| + EXPECT_DEATH(gain.Compute(X_buffer, analyzer, E, 1, false, nullptr), "");
|
| +}
|
| +
|
| +#endif
|
| +
|
| +// Verifies that the gain formed causes the filter using it to converge.
|
| +TEST(ShadowFilterUpdateGain, GainCausesFilterToConverge) {
|
| + std::vector<int> blocks_with_echo_path_changes;
|
| + std::vector<int> blocks_with_saturation;
|
| + for (size_t delay_samples : {0, 64, 150, 200, 301}) {
|
| + SCOPED_TRACE(ProduceDebugText(delay_samples));
|
| +
|
| + std::array<float, kBlockSize> e;
|
| + std::array<float, kBlockSize> y;
|
| + FftData G;
|
| +
|
| + RunFilterUpdateTest(500, delay_samples, blocks_with_saturation, &e, &y, &G);
|
| +
|
| + // Verify that the main filter is able to perform well.
|
| + EXPECT_LT(1000 * std::inner_product(e.begin(), e.end(), e.begin(), 0.f),
|
| + std::inner_product(y.begin(), y.end(), y.begin(), 0.f));
|
| + }
|
| +}
|
| +
|
| +// Verifies that the magnitude of the gain on average decreases for a
|
| +// persistently exciting signal.
|
| +TEST(ShadowFilterUpdateGain, DecreasingGain) {
|
| + std::vector<int> blocks_with_echo_path_changes;
|
| + std::vector<int> blocks_with_saturation;
|
| +
|
| + std::array<float, kBlockSize> e;
|
| + std::array<float, kBlockSize> y;
|
| + FftData G_a;
|
| + FftData G_b;
|
| + FftData G_c;
|
| + std::array<float, kFftLengthBy2Plus1> G_a_power;
|
| + std::array<float, kFftLengthBy2Plus1> G_b_power;
|
| + std::array<float, kFftLengthBy2Plus1> G_c_power;
|
| +
|
| + RunFilterUpdateTest(100, 65, blocks_with_saturation, &e, &y, &G_a);
|
| + RunFilterUpdateTest(200, 65, blocks_with_saturation, &e, &y, &G_b);
|
| + RunFilterUpdateTest(300, 65, blocks_with_saturation, &e, &y, &G_c);
|
| +
|
| + G_a.Spectrum(Aec3Optimization::kNone, &G_a_power);
|
| + G_b.Spectrum(Aec3Optimization::kNone, &G_b_power);
|
| + G_c.Spectrum(Aec3Optimization::kNone, &G_c_power);
|
| +
|
| + EXPECT_GT(std::accumulate(G_a_power.begin(), G_a_power.end(), 0.),
|
| + std::accumulate(G_b_power.begin(), G_b_power.end(), 0.));
|
| +
|
| + EXPECT_GT(std::accumulate(G_b_power.begin(), G_b_power.end(), 0.),
|
| + std::accumulate(G_c_power.begin(), G_c_power.end(), 0.));
|
| +}
|
| +
|
| +// Verifies that the gain is zero when there is saturation.
|
| +TEST(ShadowFilterUpdateGain, SaturationBehavior) {
|
| + std::vector<int> blocks_with_echo_path_changes;
|
| + std::vector<int> blocks_with_saturation;
|
| + for (int k = 99; k < 200; ++k) {
|
| + blocks_with_saturation.push_back(k);
|
| + }
|
| +
|
| + std::array<float, kBlockSize> e;
|
| + std::array<float, kBlockSize> y;
|
| + FftData G_a;
|
| + FftData G_a_ref;
|
| + G_a_ref.re.fill(0.f);
|
| + G_a_ref.im.fill(0.f);
|
| +
|
| + RunFilterUpdateTest(100, 65, blocks_with_saturation, &e, &y, &G_a);
|
| +
|
| + EXPECT_EQ(G_a_ref.re, G_a.re);
|
| + EXPECT_EQ(G_a_ref.im, G_a.im);
|
| +}
|
| +
|
| +} // namespace webrtc
|
|
|