Chromium Code Reviews| Index: webrtc/modules/audio_processing/aec3/adaptive_fir_filter.cc |
| diff --git a/webrtc/modules/audio_processing/aec3/adaptive_fir_filter.cc b/webrtc/modules/audio_processing/aec3/adaptive_fir_filter.cc |
| new file mode 100644 |
| index 0000000000000000000000000000000000000000..ba6b92ce5d90372626f106b228edf9c3b1391a32 |
| --- /dev/null |
| +++ b/webrtc/modules/audio_processing/aec3/adaptive_fir_filter.cc |
| @@ -0,0 +1,304 @@ |
| +/* |
| + * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
| + * |
| + * Use of this source code is governed by a BSD-style license |
| + * that can be found in the LICENSE file in the root of the source |
| + * tree. An additional intellectual property rights grant can be found |
| + * in the file PATENTS. All contributing project authors may |
| + * be found in the AUTHORS file in the root of the source tree. |
| + */ |
| + |
| +#include "webrtc/modules/audio_processing/aec3/adaptive_fir_filter.h" |
| + |
| +#include "webrtc/typedefs.h" |
|
ivoc
2017/02/21 17:26:01
This should be with the other webrtc includes belo
peah-webrtc
2017/02/21 23:00:39
I'm not sure how to do that properly.
WEBRTC_ARCH_
|
| +#if defined(WEBRTC_ARCH_X86_FAMILY) |
| +#include <emmintrin.h> |
| +#endif |
| +#include <algorithm> |
| +#include <functional> |
| + |
| +#include "webrtc/base/atomicops.h" |
|
hlundin-webrtc
2017/02/21 09:40:03
Now you won't need this, right?
peah-webrtc
2017/02/21 23:00:39
Done.
|
| +#include "webrtc/base/checks.h" |
| +#include "webrtc/modules/audio_processing/aec3/fft_data.h" |
| + |
| +namespace webrtc { |
| + |
| +namespace { |
| + |
| +// Constrains the a partiton of the frequency domain filter to be limited in |
| +// time via setting the relevant time-domain coefficients to zero. |
| +void Constrain(const Aec3Fft& fft, FftData* H) { |
| + std::array<float, kFftLength> h; |
| + fft.Ifft(*H, &h); |
| + constexpr float kScale = 1.0f / kFftLengthBy2; |
| + std::for_each(h.begin(), h.begin() + kFftLengthBy2, |
| + [kScale](float& a) { a *= kScale; }); |
| + std::fill(h.begin() + kFftLengthBy2, h.end(), 0.f); |
| + fft.Fft(&h, H); |
| +} |
| + |
| +// Computes and stores the frequency response of the filter. |
| +void UpdateFrequencyResponse( |
| + rtc::ArrayView<const FftData> H, |
| + std::vector<std::array<float, kFftLengthBy2Plus1>>* H2) { |
| + for (size_t k = 0; k < H.size(); ++k) { |
| + std::transform(H[k].re.begin(), H[k].re.end(), H[k].im.begin(), |
| + (*H2)[k].begin(), |
| + [](float a, float b) { return a * a + b * b; }); |
| + } |
| +} |
| + |
| +// Computes and stores the echo return loss estimate of the filter, which is the |
| +// sum of the partition frequency responses. |
| +void UpdateErlEstimator( |
| + const std::vector<std::array<float, kFftLengthBy2Plus1>>& H2, |
| + std::array<float, kFftLengthBy2Plus1>* erl) { |
| + erl->fill(0.f); |
| + for (auto& H2_j : H2) { |
| + std::transform(H2_j.begin(), H2_j.end(), erl->begin(), erl->begin(), |
| + std::plus<float>()); |
| + } |
| +} |
| + |
| +// Resets the filter. |
| +void ResetFilter(rtc::ArrayView<FftData> H) { |
| + for (auto& H_j : H) { |
| + H_j.Clear(); |
| + } |
| +} |
| + |
| +} // namespace |
| + |
| +// Adapts the filter partitions as H(t+1)=H(t)+G(t)*conj(X(t)). |
| +void AdaptPartitions(const FftBuffer& X_buffer, |
| + const FftData& G, |
| + rtc::ArrayView<FftData> H) { |
| + rtc::ArrayView<const FftData> X_buffer_data = X_buffer.Buffer(); |
| + size_t index = X_buffer.Position(); |
| + for (auto& H_j : H) { |
| + const FftData& X = X_buffer_data[index]; |
| + for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) { |
| + H_j.re[k] += X.re[k] * G.re[k] + X.im[k] * G.im[k]; |
| + H_j.im[k] += X.re[k] * G.im[k] - X.im[k] * G.re[k]; |
| + } |
| + |
| + index = index < (X_buffer_data.size() - 1) ? index + 1 : 0; |
| + } |
| +} |
| + |
| +#if defined(WEBRTC_ARCH_X86_FAMILY) |
| +// Adapts the filter partitions. (SSE2 variant) |
| +void AdaptPartitions_SSE2(const FftBuffer& X_buffer, |
| + const FftData& G, |
| + rtc::ArrayView<FftData> H) { |
| + rtc::ArrayView<const FftData> X_buffer_data = X_buffer.Buffer(); |
| + const int lim1 = |
| + std::min(X_buffer_data.size() - X_buffer.Position(), H.size()); |
| + const int lim2 = H.size(); |
| + constexpr int kNumFourBinBands = kFftLengthBy2 / 4; |
| + FftData* H_j; |
| + const FftData* X; |
| + int limit; |
| + int j; |
| + for (int k = 0, n = 0; n < kNumFourBinBands; ++n, k += 4) { |
| + const __m128 G_re = _mm_loadu_ps(&G.re[k]); |
| + const __m128 G_im = _mm_loadu_ps(&G.im[k]); |
| + |
| + H_j = &H[0]; |
| + X = &X_buffer_data[X_buffer.Position()]; |
| + limit = lim1; |
| + j = 0; |
| + do { |
| + for (; j < limit; ++j, ++H_j, ++X) { |
|
ivoc
2017/02/21 17:26:01
I think this could potentially be faster if the in
peah-webrtc
2017/02/21 23:00:39
I cannot really say that I've benchmarked it super
|
| + const __m128 X_re = _mm_loadu_ps(&X->re[k]); |
| + const __m128 X_im = _mm_loadu_ps(&X->im[k]); |
| + const __m128 H_re = _mm_loadu_ps(&H_j->re[k]); |
| + const __m128 H_im = _mm_loadu_ps(&H_j->im[k]); |
| + const __m128 a = _mm_mul_ps(X_re, G_re); |
| + const __m128 b = _mm_mul_ps(X_im, G_im); |
| + const __m128 c = _mm_mul_ps(X_re, G_im); |
| + const __m128 d = _mm_mul_ps(X_im, G_re); |
| + const __m128 e = _mm_add_ps(a, b); |
| + const __m128 f = _mm_sub_ps(c, d); |
| + const __m128 g = _mm_add_ps(H_re, e); |
| + const __m128 h = _mm_add_ps(H_im, f); |
| + _mm_storeu_ps(&H_j->re[k], g); |
| + _mm_storeu_ps(&H_j->im[k], h); |
| + } |
| + |
| + X = &X_buffer_data[0]; |
| + limit = lim2; |
| + } while (j < lim2); |
| + } |
| + |
| + H_j = &H[0]; |
| + X = &X_buffer_data[X_buffer.Position()]; |
| + limit = lim1; |
| + j = 0; |
| + do { |
| + for (; j < limit; ++j, ++H_j, ++X) { |
| + H_j->re[kFftLengthBy2] += X->re[kFftLengthBy2] * G.re[kFftLengthBy2] + |
| + X->im[kFftLengthBy2] * G.im[kFftLengthBy2]; |
| + H_j->im[kFftLengthBy2] += X->re[kFftLengthBy2] * G.im[kFftLengthBy2] - |
| + X->im[kFftLengthBy2] * G.re[kFftLengthBy2]; |
| + } |
| + |
| + X = &X_buffer_data[0]; |
| + limit = lim2; |
| + } while (j < lim2); |
| +} |
| +#endif |
| + |
| +// Produces the filter output. |
| +void ApplyFilter(const FftBuffer& X_buffer, |
| + rtc::ArrayView<const FftData> H, |
| + FftData* S) { |
| + S->re.fill(0.f); |
| + S->im.fill(0.f); |
| + |
| + rtc::ArrayView<const FftData> X_buffer_data = X_buffer.Buffer(); |
| + size_t index = X_buffer.Position(); |
| + for (auto& H_j : H) { |
| + const FftData& X = X_buffer_data[index]; |
| + for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) { |
| + S->re[k] += X.re[k] * H_j.re[k] - X.im[k] * H_j.im[k]; |
| + S->im[k] += X.re[k] * H_j.im[k] + X.im[k] * H_j.re[k]; |
| + } |
| + index = index < (X_buffer_data.size() - 1) ? index + 1 : 0; |
| + } |
| +} |
| + |
| +#if defined(WEBRTC_ARCH_X86_FAMILY) |
| +// Produces the filter output (SSE2 variant). |
| +void ApplyFilter_SSE2(const FftBuffer& X_buffer, |
| + rtc::ArrayView<const FftData> H, |
| + FftData* S) { |
| + S->re.fill(0.f); |
| + S->im.fill(0.f); |
| + |
| + rtc::ArrayView<const FftData> X_buffer_data = X_buffer.Buffer(); |
| + const int lim1 = |
| + std::min(X_buffer_data.size() - X_buffer.Position(), H.size()); |
| + const int lim2 = H.size(); |
| + constexpr int kNumFourBinBands = kFftLengthBy2 / 4; |
| + const FftData* H_j = &H[0]; |
| + const FftData* X = &X_buffer_data[X_buffer.Position()]; |
| + |
| + int j = 0; |
| + int limit = lim1; |
| + do { |
| + for (; j < limit; ++j, ++H_j, ++X) { |
| + for (int k = 0, n = 0; n < kNumFourBinBands; ++n, k += 4) { |
| + const __m128 X_re = _mm_loadu_ps(&X->re[k]); |
| + const __m128 X_im = _mm_loadu_ps(&X->im[k]); |
| + const __m128 H_re = _mm_loadu_ps(&H_j->re[k]); |
| + const __m128 H_im = _mm_loadu_ps(&H_j->im[k]); |
| + const __m128 S_re = _mm_loadu_ps(&S->re[k]); |
| + const __m128 S_im = _mm_loadu_ps(&S->im[k]); |
| + const __m128 a = _mm_mul_ps(X_re, H_re); |
| + const __m128 b = _mm_mul_ps(X_im, H_im); |
| + const __m128 c = _mm_mul_ps(X_re, H_im); |
| + const __m128 d = _mm_mul_ps(X_im, H_re); |
| + const __m128 e = _mm_sub_ps(a, b); |
| + const __m128 f = _mm_add_ps(c, d); |
| + const __m128 g = _mm_add_ps(S_re, e); |
| + const __m128 h = _mm_add_ps(S_im, f); |
| + _mm_storeu_ps(&S->re[k], g); |
| + _mm_storeu_ps(&S->im[k], h); |
| + } |
| + } |
| + limit = lim2; |
| + X = &X_buffer_data[0]; |
| + } while (j < lim2); |
| + |
| + H_j = &H[0]; |
| + X = &X_buffer_data[X_buffer.Position()]; |
| + j = 0; |
| + limit = lim1; |
| + do { |
| + for (; j < limit; ++j, ++H_j, ++X) { |
| + S->re[kFftLengthBy2] += X->re[kFftLengthBy2] * H_j->re[kFftLengthBy2] - |
| + X->im[kFftLengthBy2] * H_j->im[kFftLengthBy2]; |
| + S->im[kFftLengthBy2] += X->re[kFftLengthBy2] * H_j->im[kFftLengthBy2] + |
| + X->im[kFftLengthBy2] * H_j->re[kFftLengthBy2]; |
| + } |
| + limit = lim2; |
| + X = &X_buffer_data[0]; |
| + } while (j < lim2); |
| +} |
| +#endif |
| + |
| +AdaptiveFirFilter::AdaptiveFirFilter(size_t size_partitions, |
| + bool use_filter_statistics, |
| + Aec3Optimization optimization, |
| + ApmDataDumper* data_dumper) |
| + : data_dumper_(data_dumper), |
| + optimization_(optimization), |
| + H_(size_partitions) { |
| + RTC_DCHECK(data_dumper_); |
| + ResetFilter(H_); |
| + |
| + if (use_filter_statistics) { |
| + H2_.reset(new std::vector<std::array<float, kFftLengthBy2Plus1>>( |
| + size_partitions, std::array<float, kFftLengthBy2Plus1>())); |
| + for (auto H2_k : *H2_) { |
| + H2_k.fill(0.f); |
| + } |
| + |
| + erl_.reset(new std::array<float, kFftLengthBy2Plus1>()); |
| + erl_->fill(0.f); |
| + } |
| +} |
| + |
| +AdaptiveFirFilter::~AdaptiveFirFilter() = default; |
| + |
| +void AdaptiveFirFilter::HandleEchoPathChange() { |
| + ResetFilter(H_); |
| + if (H2_) { |
| + for (auto H2_k : *H2_) { |
| + H2_k.fill(0.f); |
| + } |
| + RTC_DCHECK(erl_); |
| + erl_->fill(0.f); |
| + } |
| +} |
| + |
| +void AdaptiveFirFilter::Filter(const FftBuffer& X_buffer, FftData* S) const { |
| + RTC_DCHECK(S); |
| + if (optimization_ == Aec3Optimization::kNone) { |
| + ApplyFilter(X_buffer, H_, S); |
| + } |
| +#if defined(WEBRTC_ARCH_X86_FAMILY) |
| + if (optimization_ == Aec3Optimization::kSse2) { |
| + ApplyFilter_SSE2(X_buffer, H_, S); |
| + } |
| +#endif |
| +} |
| + |
| +void AdaptiveFirFilter::Adapt(const FftBuffer& X_buffer, const FftData& G) { |
| + // Adapt the filter. |
| + if (optimization_ == Aec3Optimization::kNone) { |
| + AdaptPartitions(X_buffer, G, H_); |
| + } |
| +#if defined(WEBRTC_ARCH_X86_FAMILY) |
| + if (optimization_ == Aec3Optimization::kSse2) { |
| + AdaptPartitions_SSE2(X_buffer, G, H_); |
| + } |
| +#endif |
| + |
| + // Constrain the filter partitions in a cyclic manner. |
| + Constrain(fft_, &H_[partition_to_constrain_]); |
| + partition_to_constrain_ = partition_to_constrain_ < (H_.size() - 1) |
| + ? partition_to_constrain_ + 1 |
| + : 0; |
| + |
| + // Optionally update the frequency response and echo return loss for the |
| + // filter. |
| + if (H2_) { |
| + RTC_DCHECK(erl_); |
| + UpdateFrequencyResponse(H_, H2_.get()); |
| + UpdateErlEstimator(*H2_, erl_.get()); |
| + } |
| +} |
| + |
| +} // namespace webrtc |