Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(27)

Side by Side Diff: webrtc/modules/audio_processing/aec3/shadow_filter_update_gain_unittest.cc

Issue 2678423005: Finalization of the first version of EchoCanceller 3 (Closed)
Patch Set: Fixed compilation error Created 3 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "webrtc/modules/audio_processing/aec3/shadow_filter_update_gain.h"
12
13 #include <algorithm>
14 #include <numeric>
15 #include <string>
16 #include <vector>
17
18 #include "webrtc/base/random.h"
19 #include "webrtc/modules/audio_processing/aec3/adaptive_fir_filter.h"
20 #include "webrtc/modules/audio_processing/aec3/aec_state.h"
21 #include "webrtc/modules/audio_processing/aec3/aec3_common.h"
22 #include "webrtc/modules/audio_processing/test/echo_canceller_test_tools.h"
23 #include "webrtc/test/gtest.h"
24
25 namespace webrtc {
26 namespace {
27
28 // Method for performing the simulations needed to test the main filter update
29 // gain functionality.
30 void RunFilterUpdateTest(int num_blocks_to_process,
31 size_t delay_samples,
32 const std::vector<int>& blocks_with_saturation,
33 std::array<float, kBlockSize>* e_last_block,
34 std::array<float, kBlockSize>* y_last_block,
35 FftData* G_last_block) {
36 ApmDataDumper data_dumper(42);
37 AdaptiveFirFilter main_filter(9, true, DetectOptimization(), &data_dumper);
38 AdaptiveFirFilter shadow_filter(9, true, DetectOptimization(), &data_dumper);
39 Aec3Fft fft;
40 FftBuffer X_buffer(Aec3Optimization::kNone, main_filter.SizePartitions(),
41 std::vector<size_t>(1, main_filter.SizePartitions()));
42 std::array<float, kBlockSize> x_old;
43 x_old.fill(0.f);
44 ShadowFilterUpdateGain shadow_gain;
45 Random random_generator(42U);
46 std::vector<float> x(kBlockSize, 0.f);
47 std::vector<float> y(kBlockSize, 0.f);
48 AecState aec_state;
49 RenderSignalAnalyzer render_signal_analyzer;
50 FftData X;
51 std::array<float, kFftLength> s;
52 FftData S;
53 FftData G;
54 FftData E_shadow;
55 std::array<float, kBlockSize> e_shadow;
56
57 constexpr float kScale = 1.0f / kFftLengthBy2;
58
59 DelayBuffer<float> delay_buffer(delay_samples);
60 for (int k = 0; k < num_blocks_to_process; ++k) {
61 // Handle saturation.
62 bool saturation =
63 std::find(blocks_with_saturation.begin(), blocks_with_saturation.end(),
64 k) != blocks_with_saturation.end();
65
66 // Create the render signal.
67 RandomizeSampleVector(&random_generator, x);
68 delay_buffer.Delay(x, y);
69 fft.PaddedFft(x, x_old, &X);
70 X_buffer.Insert(X);
71 render_signal_analyzer.Update(
72 X_buffer, rtc::Optional<size_t>(delay_samples / kBlockSize));
73
74 shadow_filter.Filter(X_buffer, &S);
75 fft.Ifft(S, &s);
76 std::transform(y.begin(), y.end(), s.begin() + kFftLengthBy2,
77 e_shadow.begin(),
78 [&](float a, float b) { return a - b * kScale; });
79 std::for_each(e_shadow.begin(), e_shadow.end(), [](float& a) {
80 a = std::max(std::min(a, 32767.0f), -32768.0f);
81 });
82 fft.ZeroPaddedFft(e_shadow, &E_shadow);
83
84 shadow_gain.Compute(X_buffer, render_signal_analyzer, E_shadow,
85 shadow_filter.SizePartitions(), saturation, &G);
86 shadow_filter.Adapt(X_buffer, G);
87 }
88
89 std::copy(e_shadow.begin(), e_shadow.end(), e_last_block->begin());
90 std::copy(y.begin(), y.end(), y_last_block->begin());
91 std::copy(G.re.begin(), G.re.end(), G_last_block->re.begin());
92 std::copy(G.im.begin(), G.im.end(), G_last_block->im.begin());
93 }
94
95 std::string ProduceDebugText(size_t delay) {
96 std::ostringstream ss;
97 ss << ", Delay: " << delay;
98 return ss.str();
99 }
100
101 } // namespace
102
103 #if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
104
105 // Verifies that the check for non-null output gain parameter works.
106 TEST(ShadowFilterUpdateGain, NullDataOutputGain) {
107 ApmDataDumper data_dumper(42);
108 FftBuffer X_buffer(Aec3Optimization::kNone, 1, std::vector<size_t>(1, 1));
109 RenderSignalAnalyzer analyzer;
110 FftData E;
111 ShadowFilterUpdateGain gain;
112 EXPECT_DEATH(gain.Compute(X_buffer, analyzer, E, 1, false, nullptr), "");
113 }
114
115 #endif
116
117 // Verifies that the gain formed causes the filter using it to converge.
118 TEST(ShadowFilterUpdateGain, GainCausesFilterToConverge) {
119 std::vector<int> blocks_with_echo_path_changes;
120 std::vector<int> blocks_with_saturation;
121 for (size_t delay_samples : {0, 64, 150, 200, 301}) {
122 SCOPED_TRACE(ProduceDebugText(delay_samples));
123
124 std::array<float, kBlockSize> e;
125 std::array<float, kBlockSize> y;
126 FftData G;
127
128 RunFilterUpdateTest(500, delay_samples, blocks_with_saturation, &e, &y, &G);
129
130 // Verify that the main filter is able to perform well.
131 EXPECT_LT(1000 * std::inner_product(e.begin(), e.end(), e.begin(), 0.f),
132 std::inner_product(y.begin(), y.end(), y.begin(), 0.f));
133 }
134 }
135
136 // Verifies that the magnitude of the gain on average decreases for a
137 // persistently exciting signal.
138 TEST(ShadowFilterUpdateGain, DecreasingGain) {
139 std::vector<int> blocks_with_echo_path_changes;
140 std::vector<int> blocks_with_saturation;
141
142 std::array<float, kBlockSize> e;
143 std::array<float, kBlockSize> y;
144 FftData G_a;
145 FftData G_b;
146 FftData G_c;
147 std::array<float, kFftLengthBy2Plus1> G_a_power;
148 std::array<float, kFftLengthBy2Plus1> G_b_power;
149 std::array<float, kFftLengthBy2Plus1> G_c_power;
150
151 RunFilterUpdateTest(100, 65, blocks_with_saturation, &e, &y, &G_a);
152 RunFilterUpdateTest(200, 65, blocks_with_saturation, &e, &y, &G_b);
153 RunFilterUpdateTest(300, 65, blocks_with_saturation, &e, &y, &G_c);
154
155 G_a.Spectrum(Aec3Optimization::kNone, &G_a_power);
156 G_b.Spectrum(Aec3Optimization::kNone, &G_b_power);
157 G_c.Spectrum(Aec3Optimization::kNone, &G_c_power);
158
159 EXPECT_GT(std::accumulate(G_a_power.begin(), G_a_power.end(), 0.),
160 std::accumulate(G_b_power.begin(), G_b_power.end(), 0.));
161
162 EXPECT_GT(std::accumulate(G_b_power.begin(), G_b_power.end(), 0.),
163 std::accumulate(G_c_power.begin(), G_c_power.end(), 0.));
164 }
165
166 // Verifies that the gain is zero when there is saturation.
167 TEST(ShadowFilterUpdateGain, SaturationBehavior) {
168 std::vector<int> blocks_with_echo_path_changes;
169 std::vector<int> blocks_with_saturation;
170 for (int k = 99; k < 200; ++k) {
171 blocks_with_saturation.push_back(k);
172 }
173
174 std::array<float, kBlockSize> e;
175 std::array<float, kBlockSize> y;
176 FftData G_a;
177 FftData G_a_ref;
178 G_a_ref.re.fill(0.f);
179 G_a_ref.im.fill(0.f);
180
181 RunFilterUpdateTest(100, 65, blocks_with_saturation, &e, &y, &G_a);
182
183 EXPECT_EQ(G_a_ref.re, G_a.re);
184 EXPECT_EQ(G_a_ref.im, G_a.im);
185 }
186
187 } // namespace webrtc
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698